![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunitlem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
Ref | Expression |
---|---|
lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
lincresunit.t | ⊢ · = (.r‘𝑅) |
lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
Ref | Expression |
---|---|
lincresunitlem2 | ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
2 | 1 | lmodring 20883 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
3 | 2 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring) |
5 | 4 | adantr 480 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → 𝑅 ∈ Ring) |
6 | lincresunit.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | lincresunit.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
8 | lincresunit.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
9 | lincresunit.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
10 | lincresunit.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
11 | lincresunit.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
12 | lincresunit.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
13 | lincresunit.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | lincresunit.g | . . . 4 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
15 | 6, 1, 7, 8, 9, 10, 11, 12, 13, 14 | lincresunitlem1 48321 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
16 | 15 | adantr 480 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
17 | elmapi 8888 | . . . . 5 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
18 | ffvelcdm 7101 | . . . . . 6 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) | |
19 | 18 | ex 412 | . . . . 5 ⊢ (𝐹:𝑆⟶𝐸 → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
21 | 20 | ad2antrl 728 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
22 | 21 | imp 406 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) |
23 | 7, 13 | ringcl 20268 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸 ∧ (𝐹‘𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
24 | 5, 16, 22, 23 | syl3anc 1370 | 1 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 𝒫 cpw 4605 {csn 4631 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 0gc0g 17486 invgcminusg 18965 Ringcrg 20251 Unitcui 20372 invrcinvr 20404 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-lmod 20877 |
This theorem is referenced by: lincresunit1 48323 lincresunit2 48324 lincresunit3lem1 48325 lincresunit3 48327 |
Copyright terms: Public domain | W3C validator |