Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunitlem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
Ref | Expression |
---|---|
lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
lincresunit.t | ⊢ · = (.r‘𝑅) |
lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
Ref | Expression |
---|---|
lincresunitlem2 | ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
2 | 1 | lmodring 20046 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
3 | 2 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring) |
5 | 4 | adantr 480 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → 𝑅 ∈ Ring) |
6 | lincresunit.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | lincresunit.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
8 | lincresunit.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
9 | lincresunit.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
10 | lincresunit.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
11 | lincresunit.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
12 | lincresunit.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
13 | lincresunit.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | lincresunit.g | . . . 4 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
15 | 6, 1, 7, 8, 9, 10, 11, 12, 13, 14 | lincresunitlem1 45704 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
16 | 15 | adantr 480 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
17 | elmapi 8595 | . . . . 5 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
18 | ffvelrn 6941 | . . . . . 6 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) | |
19 | 18 | ex 412 | . . . . 5 ⊢ (𝐹:𝑆⟶𝐸 → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
21 | 20 | ad2antrl 724 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
22 | 21 | imp 406 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) |
23 | 7, 13 | ringcl 19715 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸 ∧ (𝐹‘𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
24 | 5, 16, 22, 23 | syl3anc 1369 | 1 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 0gc0g 17067 invgcminusg 18493 Ringcrg 19698 Unitcui 19796 invrcinvr 19828 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-lmod 20040 |
This theorem is referenced by: lincresunit1 45706 lincresunit2 45707 lincresunit3lem1 45708 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |