Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunitlem2 Structured version   Visualization version   GIF version

Theorem lincresunitlem2 48205
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunitlem2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)

Proof of Theorem lincresunitlem2
StepHypRef Expression
1 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
21lmodring 20888 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
323ad2ant2 1134 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
43adantr 480 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring)
54adantr 480 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → 𝑅 ∈ Ring)
6 lincresunit.b . . . 4 𝐵 = (Base‘𝑀)
7 lincresunit.e . . . 4 𝐸 = (Base‘𝑅)
8 lincresunit.u . . . 4 𝑈 = (Unit‘𝑅)
9 lincresunit.0 . . . 4 0 = (0g𝑅)
10 lincresunit.z . . . 4 𝑍 = (0g𝑀)
11 lincresunit.n . . . 4 𝑁 = (invg𝑅)
12 lincresunit.i . . . 4 𝐼 = (invr𝑅)
13 lincresunit.t . . . 4 · = (.r𝑅)
14 lincresunit.g . . . 4 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
156, 1, 7, 8, 9, 10, 11, 12, 13, 14lincresunitlem1 48204 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
1615adantr 480 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
17 elmapi 8907 . . . . 5 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
18 ffvelcdm 7115 . . . . . 6 ((𝐹:𝑆𝐸𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
1918ex 412 . . . . 5 (𝐹:𝑆𝐸 → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2017, 19syl 17 . . . 4 (𝐹 ∈ (𝐸m 𝑆) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2120ad2antrl 727 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2221imp 406 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
237, 13ringcl 20277 . 2 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸 ∧ (𝐹𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
245, 16, 22, 23syl3anc 1371 1 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  𝒫 cpw 4622  {csn 4648  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314  0gc0g 17499  invgcminusg 18974  Ringcrg 20260  Unitcui 20381  invrcinvr 20413  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-lmod 20882
This theorem is referenced by:  lincresunit1  48206  lincresunit2  48207  lincresunit3lem1  48208  lincresunit3  48210
  Copyright terms: Public domain W3C validator