Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunitlem2 Structured version   Visualization version   GIF version

Theorem lincresunitlem2 45705
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunitlem2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)

Proof of Theorem lincresunitlem2
StepHypRef Expression
1 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
21lmodring 20046 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
323ad2ant2 1132 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
43adantr 480 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring)
54adantr 480 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → 𝑅 ∈ Ring)
6 lincresunit.b . . . 4 𝐵 = (Base‘𝑀)
7 lincresunit.e . . . 4 𝐸 = (Base‘𝑅)
8 lincresunit.u . . . 4 𝑈 = (Unit‘𝑅)
9 lincresunit.0 . . . 4 0 = (0g𝑅)
10 lincresunit.z . . . 4 𝑍 = (0g𝑀)
11 lincresunit.n . . . 4 𝑁 = (invg𝑅)
12 lincresunit.i . . . 4 𝐼 = (invr𝑅)
13 lincresunit.t . . . 4 · = (.r𝑅)
14 lincresunit.g . . . 4 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
156, 1, 7, 8, 9, 10, 11, 12, 13, 14lincresunitlem1 45704 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
1615adantr 480 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
17 elmapi 8595 . . . . 5 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
18 ffvelrn 6941 . . . . . 6 ((𝐹:𝑆𝐸𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
1918ex 412 . . . . 5 (𝐹:𝑆𝐸 → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2017, 19syl 17 . . . 4 (𝐹 ∈ (𝐸m 𝑆) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2120ad2antrl 724 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2221imp 406 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
237, 13ringcl 19715 . 2 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸 ∧ (𝐹𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
245, 16, 22, 23syl3anc 1369 1 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  𝒫 cpw 4530  {csn 4558  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891  0gc0g 17067  invgcminusg 18493  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-lmod 20040
This theorem is referenced by:  lincresunit1  45706  lincresunit2  45707  lincresunit3lem1  45708  lincresunit3  45710
  Copyright terms: Public domain W3C validator