Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunitlem2 Structured version   Visualization version   GIF version

Theorem lincresunitlem2 46547
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐡 = (Baseβ€˜π‘€)
lincresunit.r 𝑅 = (Scalarβ€˜π‘€)
lincresunit.e 𝐸 = (Baseβ€˜π‘…)
lincresunit.u π‘ˆ = (Unitβ€˜π‘…)
lincresunit.0 0 = (0gβ€˜π‘…)
lincresunit.z 𝑍 = (0gβ€˜π‘€)
lincresunit.n 𝑁 = (invgβ€˜π‘…)
lincresunit.i 𝐼 = (invrβ€˜π‘…)
lincresunit.t Β· = (.rβ€˜π‘…)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )))
Assertion
Ref Expression
lincresunitlem2 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ π‘Œ ∈ 𝑆) β†’ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘Œ)) ∈ 𝐸)

Proof of Theorem lincresunitlem2
StepHypRef Expression
1 lincresunit.r . . . . . 6 𝑅 = (Scalarβ€˜π‘€)
21lmodring 20330 . . . . 5 (𝑀 ∈ LMod β†’ 𝑅 ∈ Ring)
323ad2ant2 1134 . . . 4 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) β†’ 𝑅 ∈ Ring)
43adantr 481 . . 3 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ 𝑅 ∈ Ring)
54adantr 481 . 2 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ π‘Œ ∈ 𝑆) β†’ 𝑅 ∈ Ring)
6 lincresunit.b . . . 4 𝐡 = (Baseβ€˜π‘€)
7 lincresunit.e . . . 4 𝐸 = (Baseβ€˜π‘…)
8 lincresunit.u . . . 4 π‘ˆ = (Unitβ€˜π‘…)
9 lincresunit.0 . . . 4 0 = (0gβ€˜π‘…)
10 lincresunit.z . . . 4 𝑍 = (0gβ€˜π‘€)
11 lincresunit.n . . . 4 𝑁 = (invgβ€˜π‘…)
12 lincresunit.i . . . 4 𝐼 = (invrβ€˜π‘…)
13 lincresunit.t . . . 4 Β· = (.rβ€˜π‘…)
14 lincresunit.g . . . 4 𝐺 = (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )))
156, 1, 7, 8, 9, 10, 11, 12, 13, 14lincresunitlem1 46546 . . 3 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸)
1615adantr 481 . 2 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ π‘Œ ∈ 𝑆) β†’ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸)
17 elmapi 8787 . . . . 5 (𝐹 ∈ (𝐸 ↑m 𝑆) β†’ 𝐹:π‘†βŸΆπΈ)
18 ffvelcdm 7032 . . . . . 6 ((𝐹:π‘†βŸΆπΈ ∧ π‘Œ ∈ 𝑆) β†’ (πΉβ€˜π‘Œ) ∈ 𝐸)
1918ex 413 . . . . 5 (𝐹:π‘†βŸΆπΈ β†’ (π‘Œ ∈ 𝑆 β†’ (πΉβ€˜π‘Œ) ∈ 𝐸))
2017, 19syl 17 . . . 4 (𝐹 ∈ (𝐸 ↑m 𝑆) β†’ (π‘Œ ∈ 𝑆 β†’ (πΉβ€˜π‘Œ) ∈ 𝐸))
2120ad2antrl 726 . . 3 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (π‘Œ ∈ 𝑆 β†’ (πΉβ€˜π‘Œ) ∈ 𝐸))
2221imp 407 . 2 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ π‘Œ ∈ 𝑆) β†’ (πΉβ€˜π‘Œ) ∈ 𝐸)
237, 13ringcl 19981 . 2 ((𝑅 ∈ Ring ∧ (πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) ∈ 𝐸 ∧ (πΉβ€˜π‘Œ) ∈ 𝐸) β†’ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘Œ)) ∈ 𝐸)
245, 16, 22, 23syl3anc 1371 1 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ π‘Œ ∈ 𝑆) β†’ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘Œ)) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βˆ– cdif 3907  π’« cpw 4560  {csn 4586   ↦ cmpt 5188  βŸΆwf 6492  β€˜cfv 6496  (class class class)co 7357   ↑m cmap 8765  Basecbs 17083  .rcmulr 17134  Scalarcsca 17136  0gc0g 17321  invgcminusg 18749  Ringcrg 19964  Unitcui 20068  invrcinvr 20100  LModclmod 20322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-lmod 20324
This theorem is referenced by:  lincresunit1  46548  lincresunit2  46549  lincresunit3lem1  46550  lincresunit3  46552
  Copyright terms: Public domain W3C validator