Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunitlem2 | Structured version Visualization version GIF version |
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
Ref | Expression |
---|---|
lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
lincresunit.t | ⊢ · = (.r‘𝑅) |
lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
Ref | Expression |
---|---|
lincresunitlem2 | ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
2 | 1 | lmodring 20214 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
3 | 2 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
4 | 3 | adantr 481 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring) |
5 | 4 | adantr 481 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → 𝑅 ∈ Ring) |
6 | lincresunit.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | lincresunit.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
8 | lincresunit.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
9 | lincresunit.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
10 | lincresunit.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
11 | lincresunit.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
12 | lincresunit.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
13 | lincresunit.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | lincresunit.g | . . . 4 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
15 | 6, 1, 7, 8, 9, 10, 11, 12, 13, 14 | lincresunitlem1 46081 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
16 | 15 | adantr 481 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) |
17 | elmapi 8687 | . . . . 5 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
18 | ffvelcdm 6999 | . . . . . 6 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) | |
19 | 18 | ex 413 | . . . . 5 ⊢ (𝐹:𝑆⟶𝐸 → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
21 | 20 | ad2antrl 725 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑌 ∈ 𝑆 → (𝐹‘𝑌) ∈ 𝐸)) |
22 | 21 | imp 407 | . 2 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → (𝐹‘𝑌) ∈ 𝐸) |
23 | 7, 13 | ringcl 19875 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸 ∧ (𝐹‘𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
24 | 5, 16, 22, 23 | syl3anc 1370 | 1 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 𝒫 cpw 4545 {csn 4571 ↦ cmpt 5170 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ↑m cmap 8665 Basecbs 16989 .rcmulr 17040 Scalarcsca 17042 0gc0g 17227 invgcminusg 18654 Ringcrg 19858 Unitcui 19956 invrcinvr 19988 LModclmod 20206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-grp 18656 df-minusg 18657 df-mgp 19796 df-ur 19813 df-ring 19860 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-lmod 20208 |
This theorem is referenced by: lincresunit1 46083 lincresunit2 46084 lincresunit3lem1 46085 lincresunit3 46087 |
Copyright terms: Public domain | W3C validator |