| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| lpadlen2.1 | ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
| Ref | Expression |
|---|---|
| lpadlem2 | ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzofi 13900 | . . . 4 ⊢ (0..^(𝐿 − (♯‘𝑊))) ∈ Fin | |
| 2 | snfi 8975 | . . . 4 ⊢ {𝐶} ∈ Fin | |
| 3 | hashxp 14360 | . . . 4 ⊢ (((0..^(𝐿 − (♯‘𝑊))) ∈ Fin ∧ {𝐶} ∈ Fin) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = ((♯‘(0..^(𝐿 − (♯‘𝑊)))) · (♯‘{𝐶}))) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = ((♯‘(0..^(𝐿 − (♯‘𝑊)))) · (♯‘{𝐶})) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = ((♯‘(0..^(𝐿 − (♯‘𝑊)))) · (♯‘{𝐶}))) |
| 6 | lpadlen.2 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 7 | lencl 14459 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 9 | lpadlen.1 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 10 | lpadlen2.1 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) | |
| 11 | nn0sub2 12556 | . . . . 5 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ≤ 𝐿) → (𝐿 − (♯‘𝑊)) ∈ ℕ0) | |
| 12 | 8, 9, 10, 11 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
| 13 | hashfzo0 14356 | . . . 4 ⊢ ((𝐿 − (♯‘𝑊)) ∈ ℕ0 → (♯‘(0..^(𝐿 − (♯‘𝑊)))) = (𝐿 − (♯‘𝑊))) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(0..^(𝐿 − (♯‘𝑊)))) = (𝐿 − (♯‘𝑊))) |
| 15 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 16 | hashsng 14295 | . . . 4 ⊢ (𝐶 ∈ 𝑆 → (♯‘{𝐶}) = 1) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘{𝐶}) = 1) |
| 18 | 14, 17 | oveq12d 7371 | . 2 ⊢ (𝜑 → ((♯‘(0..^(𝐿 − (♯‘𝑊)))) · (♯‘{𝐶})) = ((𝐿 − (♯‘𝑊)) · 1)) |
| 19 | 12 | nn0cnd 12466 | . . 3 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℂ) |
| 20 | 19 | mulridd 11151 | . 2 ⊢ (𝜑 → ((𝐿 − (♯‘𝑊)) · 1) = (𝐿 − (♯‘𝑊))) |
| 21 | 5, 18, 20 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 0cc0 11028 1c1 11029 · cmul 11033 ≤ cle 11169 − cmin 11366 ℕ0cn0 12403 ..^cfzo 13576 ♯chash 14256 Word cword 14439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-hash 14257 df-word 14440 |
| This theorem is referenced by: lpadlen2 34668 lpadleft 34670 lpadright 34671 |
| Copyright terms: Public domain | W3C validator |