![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspindp3 | Structured version Visualization version GIF version |
Description: Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
lspindp3.v | ⊢ 𝑉 = (Base‘𝑊) |
lspindp3.p | ⊢ + = (+g‘𝑊) |
lspindp3.o | ⊢ 0 = (0g‘𝑊) |
lspindp3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspindp3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspindp3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspindp3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lspindp3.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspindp3 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑋 + 𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspindp3.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lspindp3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspindp3.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
4 | lspindp3.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
5 | lspindp3.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | lspindp3.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) → 𝑊 ∈ LVec) |
8 | lspindp3.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) → 𝑋 ∈ 𝑉) |
10 | lspindp3.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
12 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) | |
13 | 2, 3, 4, 5, 7, 9, 11, 12 | lspabs2 20682 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
14 | 13 | ex 413 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
15 | 14 | necon3d 2960 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑋 + 𝑌)}))) |
16 | 1, 15 | mpd 15 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑋 + 𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∖ cdif 3941 {csn 4622 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 0gc0g 17367 LSpanclspn 20531 LVecclvec 20662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cntz 19147 df-lsm 19468 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lvec 20663 |
This theorem is referenced by: mapdindp4 40397 hdmaprnlem3uN 40525 |
Copyright terms: Public domain | W3C validator |