MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   GIF version

Theorem ruclem10 16281
Description: Lemma for ruc 16285. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem10.6 (𝜑𝑀 ∈ ℕ0)
ruclem10.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ruclem10 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
2 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3 ruc.4 . . . . 5 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐶)
51, 2, 3, 4ruclem6 16277 . . . 4 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
6 ruclem10.6 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6ffvelcdmd 7112 . . 3 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
8 xp1st 8054 . . 3 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
97, 8syl 17 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
10 ruclem10.7 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1110, 6ifcld 4580 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
125, 11ffvelcdmd 7112 . . 3 (𝜑 → (𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ))
13 xp1st 8054 . . 3 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
1412, 13syl 17 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
155, 10ffvelcdmd 7112 . . 3 (𝜑 → (𝐺𝑁) ∈ (ℝ × ℝ))
16 xp2nd 8055 . . 3 ((𝐺𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑁)) ∈ ℝ)
1715, 16syl 17 . 2 (𝜑 → (2nd ‘(𝐺𝑁)) ∈ ℝ)
186nn0red 12595 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1910nn0red 12595 . . . . . 6 (𝜑𝑁 ∈ ℝ)
20 max1 13233 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2118, 19, 20syl2anc 584 . . . . 5 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
226nn0zd 12646 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2311nn0zd 12646 . . . . . 6 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
24 eluz 12899 . . . . . 6 ((𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2522, 23, 24syl2anc 584 . . . . 5 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2621, 25mpbird 257 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
271, 2, 3, 4, 6, 26ruclem9 16280 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑀))))
2827simpld 494 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
29 xp2nd 8055 . . . 4 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
3012, 29syl 17 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
311, 2, 3, 4ruclem8 16279 . . . 4 ((𝜑 ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
3211, 31mpdan 687 . . 3 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
33 max2 13235 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3418, 19, 33syl2anc 584 . . . . . 6 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3510nn0zd 12646 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
36 eluz 12899 . . . . . . 7 ((𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3735, 23, 36syl2anc 584 . . . . . 6 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3834, 37mpbird 257 . . . . 5 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
391, 2, 3, 4, 10, 38ruclem9 16280 . . . 4 (𝜑 → ((1st ‘(𝐺𝑁)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁))))
4039simprd 495 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁)))
4114, 30, 17, 32, 40ltletrd 11428 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺𝑁)))
429, 14, 17, 28, 41lelttrd 11426 1 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2108  csb 3911  cun 3964  ifcif 4534  {csn 4634  cop 4640   class class class wbr 5151   × cxp 5691  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021  cr 11161  0cc0 11162  1c1 11163   + caddc 11165   < clt 11302  cle 11303   / cdiv 11927  cn 12273  2c2 12328  0cn0 12533  cz 12620  cuz 12885  seqcseq 14048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-seq 14049
This theorem is referenced by:  ruclem11  16282  ruclem12  16283
  Copyright terms: Public domain W3C validator