MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   GIF version

Theorem ruclem10 16182
Description: Lemma for ruc 16186. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (πœ‘ β†’ 𝐹:β„•βŸΆβ„)
ruc.2 (πœ‘ β†’ 𝐷 = (π‘₯ ∈ (ℝ Γ— ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st β€˜π‘₯) + (2nd β€˜π‘₯)) / 2) / π‘šβ¦Œif(π‘š < 𝑦, ⟨(1st β€˜π‘₯), π‘šβŸ©, ⟨((π‘š + (2nd β€˜π‘₯)) / 2), (2nd β€˜π‘₯)⟩)))
ruc.4 𝐢 = ({⟨0, ⟨0, 1⟩⟩} βˆͺ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐢)
ruclem10.6 (πœ‘ β†’ 𝑀 ∈ β„•0)
ruclem10.7 (πœ‘ β†’ 𝑁 ∈ β„•0)
Assertion
Ref Expression
ruclem10 (πœ‘ β†’ (1st β€˜(πΊβ€˜π‘€)) < (2nd β€˜(πΊβ€˜π‘)))
Distinct variable groups:   π‘₯,π‘š,𝑦,𝐹   π‘š,𝐺,π‘₯,𝑦   π‘š,𝑀,π‘₯,𝑦   π‘š,𝑁,π‘₯,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦,π‘š)   𝐢(π‘₯,𝑦,π‘š)   𝐷(π‘₯,𝑦,π‘š)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5 (πœ‘ β†’ 𝐹:β„•βŸΆβ„)
2 ruc.2 . . . . 5 (πœ‘ β†’ 𝐷 = (π‘₯ ∈ (ℝ Γ— ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st β€˜π‘₯) + (2nd β€˜π‘₯)) / 2) / π‘šβ¦Œif(π‘š < 𝑦, ⟨(1st β€˜π‘₯), π‘šβŸ©, ⟨((π‘š + (2nd β€˜π‘₯)) / 2), (2nd β€˜π‘₯)⟩)))
3 ruc.4 . . . . 5 𝐢 = ({⟨0, ⟨0, 1⟩⟩} βˆͺ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐢)
51, 2, 3, 4ruclem6 16178 . . . 4 (πœ‘ β†’ 𝐺:β„•0⟢(ℝ Γ— ℝ))
6 ruclem10.6 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„•0)
75, 6ffvelcdmd 7088 . . 3 (πœ‘ β†’ (πΊβ€˜π‘€) ∈ (ℝ Γ— ℝ))
8 xp1st 8007 . . 3 ((πΊβ€˜π‘€) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(πΊβ€˜π‘€)) ∈ ℝ)
97, 8syl 17 . 2 (πœ‘ β†’ (1st β€˜(πΊβ€˜π‘€)) ∈ ℝ)
10 ruclem10.7 . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„•0)
1110, 6ifcld 4575 . . . 4 (πœ‘ β†’ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ β„•0)
125, 11ffvelcdmd 7088 . . 3 (πœ‘ β†’ (πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀)) ∈ (ℝ Γ— ℝ))
13 xp1st 8007 . . 3 ((πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀)) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∈ ℝ)
1412, 13syl 17 . 2 (πœ‘ β†’ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∈ ℝ)
155, 10ffvelcdmd 7088 . . 3 (πœ‘ β†’ (πΊβ€˜π‘) ∈ (ℝ Γ— ℝ))
16 xp2nd 8008 . . 3 ((πΊβ€˜π‘) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(πΊβ€˜π‘)) ∈ ℝ)
1715, 16syl 17 . 2 (πœ‘ β†’ (2nd β€˜(πΊβ€˜π‘)) ∈ ℝ)
186nn0red 12533 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ ℝ)
1910nn0red 12533 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ ℝ)
20 max1 13164 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) β†’ 𝑀 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀))
2118, 19, 20syl2anc 585 . . . . 5 (πœ‘ β†’ 𝑀 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀))
226nn0zd 12584 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ β„€)
2311nn0zd 12584 . . . . . 6 (πœ‘ β†’ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ β„€)
24 eluz 12836 . . . . . 6 ((𝑀 ∈ β„€ ∧ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ β„€) β†’ (if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘€) ↔ 𝑀 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀)))
2522, 23, 24syl2anc 585 . . . . 5 (πœ‘ β†’ (if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘€) ↔ 𝑀 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀)))
2621, 25mpbird 257 . . . 4 (πœ‘ β†’ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘€))
271, 2, 3, 4, 6, 26ruclem9 16181 . . 3 (πœ‘ β†’ ((1st β€˜(πΊβ€˜π‘€)) ≀ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∧ (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ≀ (2nd β€˜(πΊβ€˜π‘€))))
2827simpld 496 . 2 (πœ‘ β†’ (1st β€˜(πΊβ€˜π‘€)) ≀ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))))
29 xp2nd 8008 . . . 4 ((πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀)) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∈ ℝ)
3012, 29syl 17 . . 3 (πœ‘ β†’ (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∈ ℝ)
311, 2, 3, 4ruclem8 16180 . . . 4 ((πœ‘ ∧ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ β„•0) β†’ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) < (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))))
3211, 31mpdan 686 . . 3 (πœ‘ β†’ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) < (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))))
33 max2 13166 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) β†’ 𝑁 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀))
3418, 19, 33syl2anc 585 . . . . . 6 (πœ‘ β†’ 𝑁 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀))
3510nn0zd 12584 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ β„€)
36 eluz 12836 . . . . . . 7 ((𝑁 ∈ β„€ ∧ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ β„€) β†’ (if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘) ↔ 𝑁 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀)))
3735, 23, 36syl2anc 585 . . . . . 6 (πœ‘ β†’ (if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘) ↔ 𝑁 ≀ if(𝑀 ≀ 𝑁, 𝑁, 𝑀)))
3834, 37mpbird 257 . . . . 5 (πœ‘ β†’ if(𝑀 ≀ 𝑁, 𝑁, 𝑀) ∈ (β„€β‰₯β€˜π‘))
391, 2, 3, 4, 10, 38ruclem9 16181 . . . 4 (πœ‘ β†’ ((1st β€˜(πΊβ€˜π‘)) ≀ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ∧ (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ≀ (2nd β€˜(πΊβ€˜π‘))))
4039simprd 497 . . 3 (πœ‘ β†’ (2nd β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) ≀ (2nd β€˜(πΊβ€˜π‘)))
4114, 30, 17, 32, 40ltletrd 11374 . 2 (πœ‘ β†’ (1st β€˜(πΊβ€˜if(𝑀 ≀ 𝑁, 𝑁, 𝑀))) < (2nd β€˜(πΊβ€˜π‘)))
429, 14, 17, 28, 41lelttrd 11372 1 (πœ‘ β†’ (1st β€˜(πΊβ€˜π‘€)) < (2nd β€˜(πΊβ€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1542   ∈ wcel 2107  β¦‹csb 3894   βˆͺ cun 3947  ifcif 4529  {csn 4629  βŸ¨cop 4635   class class class wbr 5149   Γ— cxp 5675  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1st c1st 7973  2nd c2nd 7974  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248   ≀ cle 11249   / cdiv 11871  β„•cn 12212  2c2 12267  β„•0cn0 12472  β„€cz 12558  β„€β‰₯cuz 12822  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-seq 13967
This theorem is referenced by:  ruclem11  16183  ruclem12  16184
  Copyright terms: Public domain W3C validator