![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem10 | Structured version Visualization version GIF version |
Description: Lemma for ruc 16291. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
ruclem10.6 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
ruclem10.7 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
ruclem10 | ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
5 | 1, 2, 3, 4 | ruclem6 16283 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
6 | ruclem10.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
7 | 5, 6 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐺‘𝑀) ∈ (ℝ × ℝ)) |
8 | xp1st 8062 | . . 3 ⊢ ((𝐺‘𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑀)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ∈ ℝ) |
10 | ruclem10.7 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 10, 6 | ifcld 4594 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
12 | 5, 11 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ)) |
13 | xp1st 8062 | . . 3 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
15 | 5, 10 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐺‘𝑁) ∈ (ℝ × ℝ)) |
16 | xp2nd 8063 | . . 3 ⊢ ((𝐺‘𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) |
18 | 6 | nn0red 12614 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 10 | nn0red 12614 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | max1 13247 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
21 | 18, 19, 20 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
22 | 6 | nn0zd 12665 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 11 | nn0zd 12665 | . . . . . 6 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
24 | eluz 12917 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
25 | 22, 23, 24 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
26 | 21, 25 | mpbird 257 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
27 | 1, 2, 3, 4, 6, 26 | ruclem9 16286 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑀)))) |
28 | 27 | simpld 494 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
29 | xp2nd 8063 | . . . 4 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
30 | 12, 29 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
31 | 1, 2, 3, 4 | ruclem8 16285 | . . . 4 ⊢ ((𝜑 ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
32 | 11, 31 | mpdan 686 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
33 | max2 13249 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
34 | 18, 19, 33 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
35 | 10 | nn0zd 12665 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | eluz 12917 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
37 | 35, 23, 36 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
38 | 34, 37 | mpbird 257 | . . . . 5 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
39 | 1, 2, 3, 4, 10, 38 | ruclem9 16286 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑁)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁)))) |
40 | 39 | simprd 495 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁))) |
41 | 14, 30, 17, 32, 40 | ltletrd 11450 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘𝑁))) |
42 | 9, 14, 17, 28, 41 | lelttrd 11448 | 1 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ∪ cun 3974 ifcif 4548 {csn 4648 〈cop 4654 class class class wbr 5166 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 2nd c2nd 8029 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 / cdiv 11947 ℕcn 12293 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 |
This theorem is referenced by: ruclem11 16288 ruclem12 16289 |
Copyright terms: Public domain | W3C validator |