MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   GIF version

Theorem ruclem10 15592
Description: Lemma for ruc 15596. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem10.6 (𝜑𝑀 ∈ ℕ0)
ruclem10.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ruclem10 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
2 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3 ruc.4 . . . . 5 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐶)
51, 2, 3, 4ruclem6 15588 . . . 4 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
6 ruclem10.6 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6ffvelrnd 6852 . . 3 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
8 xp1st 7721 . . 3 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
97, 8syl 17 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
10 ruclem10.7 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1110, 6ifcld 4512 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
125, 11ffvelrnd 6852 . . 3 (𝜑 → (𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ))
13 xp1st 7721 . . 3 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
1412, 13syl 17 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
155, 10ffvelrnd 6852 . . 3 (𝜑 → (𝐺𝑁) ∈ (ℝ × ℝ))
16 xp2nd 7722 . . 3 ((𝐺𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑁)) ∈ ℝ)
1715, 16syl 17 . 2 (𝜑 → (2nd ‘(𝐺𝑁)) ∈ ℝ)
186nn0red 11957 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1910nn0red 11957 . . . . . 6 (𝜑𝑁 ∈ ℝ)
20 max1 12579 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2118, 19, 20syl2anc 586 . . . . 5 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
226nn0zd 12086 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2311nn0zd 12086 . . . . . 6 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
24 eluz 12258 . . . . . 6 ((𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2522, 23, 24syl2anc 586 . . . . 5 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2621, 25mpbird 259 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
271, 2, 3, 4, 6, 26ruclem9 15591 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑀))))
2827simpld 497 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
29 xp2nd 7722 . . . 4 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
3012, 29syl 17 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
311, 2, 3, 4ruclem8 15590 . . . 4 ((𝜑 ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
3211, 31mpdan 685 . . 3 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
33 max2 12581 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3418, 19, 33syl2anc 586 . . . . . 6 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3510nn0zd 12086 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
36 eluz 12258 . . . . . . 7 ((𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3735, 23, 36syl2anc 586 . . . . . 6 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3834, 37mpbird 259 . . . . 5 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
391, 2, 3, 4, 10, 38ruclem9 15591 . . . 4 (𝜑 → ((1st ‘(𝐺𝑁)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁))))
4039simprd 498 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁)))
4114, 30, 17, 32, 40ltletrd 10800 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺𝑁)))
429, 14, 17, 28, 41lelttrd 10798 1 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  csb 3883  cun 3934  ifcif 4467  {csn 4567  cop 4573   class class class wbr 5066   × cxp 5553  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  seqcseq 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371
This theorem is referenced by:  ruclem11  15593  ruclem12  15594
  Copyright terms: Public domain W3C validator