| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16152. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
| ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
| ruclem10.6 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| ruclem10.7 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ruclem10 | ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
| 3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
| 5 | 1, 2, 3, 4 | ruclem6 16144 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
| 6 | ruclem10.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 7 | 5, 6 | ffvelcdmd 7019 | . . 3 ⊢ (𝜑 → (𝐺‘𝑀) ∈ (ℝ × ℝ)) |
| 8 | xp1st 7956 | . . 3 ⊢ ((𝐺‘𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑀)) ∈ ℝ) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ∈ ℝ) |
| 10 | ruclem10.7 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 11 | 10, 6 | ifcld 4523 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
| 12 | 5, 11 | ffvelcdmd 7019 | . . 3 ⊢ (𝜑 → (𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ)) |
| 13 | xp1st 7956 | . . 3 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
| 15 | 5, 10 | ffvelcdmd 7019 | . . 3 ⊢ (𝜑 → (𝐺‘𝑁) ∈ (ℝ × ℝ)) |
| 16 | xp2nd 7957 | . . 3 ⊢ ((𝐺‘𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) |
| 18 | 6 | nn0red 12446 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 19 | 10 | nn0red 12446 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | max1 13087 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 22 | 6 | nn0zd 12497 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 23 | 11 | nn0zd 12497 | . . . . . 6 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 24 | eluz 12749 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 25 | 22, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 26 | 21, 25 | mpbird 257 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
| 27 | 1, 2, 3, 4, 6, 26 | ruclem9 16147 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑀)))) |
| 28 | 27 | simpld 494 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 29 | xp2nd 7957 | . . . 4 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
| 30 | 12, 29 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
| 31 | 1, 2, 3, 4 | ruclem8 16146 | . . . 4 ⊢ ((𝜑 ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 32 | 11, 31 | mpdan 687 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 33 | max2 13089 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 34 | 18, 19, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 35 | 10 | nn0zd 12497 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 36 | eluz 12749 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 37 | 35, 23, 36 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 38 | 34, 37 | mpbird 257 | . . . . 5 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
| 39 | 1, 2, 3, 4, 10, 38 | ruclem9 16147 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑁)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁)))) |
| 40 | 39 | simprd 495 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁))) |
| 41 | 14, 30, 17, 32, 40 | ltletrd 11276 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘𝑁))) |
| 42 | 9, 14, 17, 28, 41 | lelttrd 11274 | 1 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⦋csb 3851 ∪ cun 3901 ifcif 4476 {csn 4577 〈cop 4583 class class class wbr 5092 × cxp 5617 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 / cdiv 11777 ℕcn 12128 2c2 12183 ℕ0cn0 12384 ℤcz 12471 ℤ≥cuz 12735 seqcseq 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 |
| This theorem is referenced by: ruclem11 16149 ruclem12 16150 |
| Copyright terms: Public domain | W3C validator |