MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   GIF version

Theorem ruclem10 16213
Description: Lemma for ruc 16217. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem10.6 (𝜑𝑀 ∈ ℕ0)
ruclem10.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ruclem10 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
2 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3 ruc.4 . . . . 5 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐶)
51, 2, 3, 4ruclem6 16209 . . . 4 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
6 ruclem10.6 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6ffvelcdmd 7059 . . 3 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
8 xp1st 8002 . . 3 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
97, 8syl 17 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
10 ruclem10.7 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1110, 6ifcld 4537 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
125, 11ffvelcdmd 7059 . . 3 (𝜑 → (𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ))
13 xp1st 8002 . . 3 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
1412, 13syl 17 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
155, 10ffvelcdmd 7059 . . 3 (𝜑 → (𝐺𝑁) ∈ (ℝ × ℝ))
16 xp2nd 8003 . . 3 ((𝐺𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑁)) ∈ ℝ)
1715, 16syl 17 . 2 (𝜑 → (2nd ‘(𝐺𝑁)) ∈ ℝ)
186nn0red 12510 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1910nn0red 12510 . . . . . 6 (𝜑𝑁 ∈ ℝ)
20 max1 13151 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2118, 19, 20syl2anc 584 . . . . 5 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
226nn0zd 12561 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2311nn0zd 12561 . . . . . 6 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
24 eluz 12813 . . . . . 6 ((𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2522, 23, 24syl2anc 584 . . . . 5 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2621, 25mpbird 257 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
271, 2, 3, 4, 6, 26ruclem9 16212 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑀))))
2827simpld 494 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
29 xp2nd 8003 . . . 4 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
3012, 29syl 17 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
311, 2, 3, 4ruclem8 16211 . . . 4 ((𝜑 ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
3211, 31mpdan 687 . . 3 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
33 max2 13153 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3418, 19, 33syl2anc 584 . . . . . 6 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3510nn0zd 12561 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
36 eluz 12813 . . . . . . 7 ((𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3735, 23, 36syl2anc 584 . . . . . 6 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3834, 37mpbird 257 . . . . 5 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
391, 2, 3, 4, 10, 38ruclem9 16212 . . . 4 (𝜑 → ((1st ‘(𝐺𝑁)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁))))
4039simprd 495 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁)))
4114, 30, 17, 32, 40ltletrd 11340 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺𝑁)))
429, 14, 17, 28, 41lelttrd 11338 1 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  csb 3864  cun 3914  ifcif 4490  {csn 4591  cop 4597   class class class wbr 5109   × cxp 5638  wf 6509  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cle 11215   / cdiv 11841  cn 12187  2c2 12242  0cn0 12448  cz 12535  cuz 12799  seqcseq 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-seq 13973
This theorem is referenced by:  ruclem11  16214  ruclem12  16215
  Copyright terms: Public domain W3C validator