| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16187. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
| ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
| ruclem10.6 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| ruclem10.7 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ruclem10 | ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
| 3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
| 5 | 1, 2, 3, 4 | ruclem6 16179 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
| 6 | ruclem10.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 7 | 5, 6 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐺‘𝑀) ∈ (ℝ × ℝ)) |
| 8 | xp1st 7979 | . . 3 ⊢ ((𝐺‘𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑀)) ∈ ℝ) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ∈ ℝ) |
| 10 | ruclem10.7 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 11 | 10, 6 | ifcld 4531 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
| 12 | 5, 11 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ)) |
| 13 | xp1st 7979 | . . 3 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
| 15 | 5, 10 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐺‘𝑁) ∈ (ℝ × ℝ)) |
| 16 | xp2nd 7980 | . . 3 ⊢ ((𝐺‘𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) |
| 18 | 6 | nn0red 12480 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 19 | 10 | nn0red 12480 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | max1 13121 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 22 | 6 | nn0zd 12531 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 23 | 11 | nn0zd 12531 | . . . . . 6 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 24 | eluz 12783 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 25 | 22, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 26 | 21, 25 | mpbird 257 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
| 27 | 1, 2, 3, 4, 6, 26 | ruclem9 16182 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑀)))) |
| 28 | 27 | simpld 494 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 29 | xp2nd 7980 | . . . 4 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
| 30 | 12, 29 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
| 31 | 1, 2, 3, 4 | ruclem8 16181 | . . . 4 ⊢ ((𝜑 ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 32 | 11, 31 | mpdan 687 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 33 | max2 13123 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 34 | 18, 19, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 35 | 10 | nn0zd 12531 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 36 | eluz 12783 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 37 | 35, 23, 36 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 38 | 34, 37 | mpbird 257 | . . . . 5 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
| 39 | 1, 2, 3, 4, 10, 38 | ruclem9 16182 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑁)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁)))) |
| 40 | 39 | simprd 495 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁))) |
| 41 | 14, 30, 17, 32, 40 | ltletrd 11310 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘𝑁))) |
| 42 | 9, 14, 17, 28, 41 | lelttrd 11308 | 1 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⦋csb 3859 ∪ cun 3909 ifcif 4484 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 / cdiv 11811 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 seqcseq 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 |
| This theorem is referenced by: ruclem11 16184 ruclem12 16185 |
| Copyright terms: Public domain | W3C validator |