Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem10 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15963. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
ruclem10.6 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
ruclem10.7 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
ruclem10 | ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
5 | 1, 2, 3, 4 | ruclem6 15955 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
6 | ruclem10.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
7 | 5, 6 | ffvelrnd 6959 | . . 3 ⊢ (𝜑 → (𝐺‘𝑀) ∈ (ℝ × ℝ)) |
8 | xp1st 7857 | . . 3 ⊢ ((𝐺‘𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑀)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ∈ ℝ) |
10 | ruclem10.7 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 10, 6 | ifcld 4511 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
12 | 5, 11 | ffvelrnd 6959 | . . 3 ⊢ (𝜑 → (𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ)) |
13 | xp1st 7857 | . . 3 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
15 | 5, 10 | ffvelrnd 6959 | . . 3 ⊢ (𝜑 → (𝐺‘𝑁) ∈ (ℝ × ℝ)) |
16 | xp2nd 7858 | . . 3 ⊢ ((𝐺‘𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) |
18 | 6 | nn0red 12305 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 10 | nn0red 12305 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | max1 12930 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
22 | 6 | nn0zd 12435 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 11 | nn0zd 12435 | . . . . . 6 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
24 | eluz 12607 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
25 | 22, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
26 | 21, 25 | mpbird 256 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
27 | 1, 2, 3, 4, 6, 26 | ruclem9 15958 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑀)))) |
28 | 27 | simpld 495 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
29 | xp2nd 7858 | . . . 4 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
30 | 12, 29 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
31 | 1, 2, 3, 4 | ruclem8 15957 | . . . 4 ⊢ ((𝜑 ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
32 | 11, 31 | mpdan 684 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
33 | max2 12932 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
34 | 18, 19, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
35 | 10 | nn0zd 12435 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | eluz 12607 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
37 | 35, 23, 36 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
38 | 34, 37 | mpbird 256 | . . . . 5 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
39 | 1, 2, 3, 4, 10, 38 | ruclem9 15958 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑁)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁)))) |
40 | 39 | simprd 496 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁))) |
41 | 14, 30, 17, 32, 40 | ltletrd 11146 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘𝑁))) |
42 | 9, 14, 17, 28, 41 | lelttrd 11144 | 1 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ⦋csb 3837 ∪ cun 3890 ifcif 4465 {csn 4567 〈cop 4573 class class class wbr 5079 × cxp 5588 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 ∈ cmpo 7274 1st c1st 7823 2nd c2nd 7824 ℝcr 10881 0cc0 10882 1c1 10883 + caddc 10885 < clt 11020 ≤ cle 11021 / cdiv 11643 ℕcn 11984 2c2 12039 ℕ0cn0 12244 ℤcz 12330 ℤ≥cuz 12593 seqcseq 13732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-n0 12245 df-z 12331 df-uz 12594 df-fz 13251 df-seq 13733 |
This theorem is referenced by: ruclem11 15960 ruclem12 15961 |
Copyright terms: Public domain | W3C validator |