Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem10 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15880. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
ruclem10.6 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
ruclem10.7 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
ruclem10 | ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
5 | 1, 2, 3, 4 | ruclem6 15872 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
6 | ruclem10.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
7 | 5, 6 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐺‘𝑀) ∈ (ℝ × ℝ)) |
8 | xp1st 7836 | . . 3 ⊢ ((𝐺‘𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑀)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ∈ ℝ) |
10 | ruclem10.7 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 10, 6 | ifcld 4502 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
12 | 5, 11 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ)) |
13 | xp1st 7836 | . . 3 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
15 | 5, 10 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐺‘𝑁) ∈ (ℝ × ℝ)) |
16 | xp2nd 7837 | . . 3 ⊢ ((𝐺‘𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺‘𝑁)) ∈ ℝ) |
18 | 6 | nn0red 12224 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 10 | nn0red 12224 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | max1 12848 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
21 | 18, 19, 20 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
22 | 6 | nn0zd 12353 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 11 | nn0zd 12353 | . . . . . 6 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
24 | eluz 12525 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
25 | 22, 23, 24 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
26 | 21, 25 | mpbird 256 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
27 | 1, 2, 3, 4, 6, 26 | ruclem9 15875 | . . 3 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑀)))) |
28 | 27 | simpld 494 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
29 | xp2nd 7837 | . . . 4 ⊢ ((𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) | |
30 | 12, 29 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∈ ℝ) |
31 | 1, 2, 3, 4 | ruclem8 15874 | . . . 4 ⊢ ((𝜑 ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
32 | 11, 31 | mpdan 683 | . . 3 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
33 | max2 12850 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
34 | 18, 19, 33 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
35 | 10 | nn0zd 12353 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | eluz 12525 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
37 | 35, 23, 36 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
38 | 34, 37 | mpbird 256 | . . . . 5 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
39 | 1, 2, 3, 4, 10, 38 | ruclem9 15875 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐺‘𝑁)) ≤ (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁)))) |
40 | 39 | simprd 495 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺‘𝑁))) |
41 | 14, 30, 17, 32, 40 | ltletrd 11065 | . 2 ⊢ (𝜑 → (1st ‘(𝐺‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘𝑁))) |
42 | 9, 14, 17, 28, 41 | lelttrd 11063 | 1 ⊢ (𝜑 → (1st ‘(𝐺‘𝑀)) < (2nd ‘(𝐺‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 ∪ cun 3881 ifcif 4456 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: ruclem11 15877 ruclem12 15878 |
Copyright terms: Public domain | W3C validator |