MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   GIF version

Theorem ruclem10 16183
Description: Lemma for ruc 16187. Every first component of the 𝐺 sequence is less than every second component. That is, the sequences form a chain a1 < a2 <... < b2 < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem10.6 (𝜑𝑀 ∈ ℕ0)
ruclem10.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ruclem10 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
2 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3 ruc.4 . . . . 5 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐶)
51, 2, 3, 4ruclem6 16179 . . . 4 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
6 ruclem10.6 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6ffvelcdmd 7039 . . 3 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
8 xp1st 7979 . . 3 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
97, 8syl 17 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
10 ruclem10.7 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1110, 6ifcld 4531 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
125, 11ffvelcdmd 7039 . . 3 (𝜑 → (𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ))
13 xp1st 7979 . . 3 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
1412, 13syl 17 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
155, 10ffvelcdmd 7039 . . 3 (𝜑 → (𝐺𝑁) ∈ (ℝ × ℝ))
16 xp2nd 7980 . . 3 ((𝐺𝑁) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑁)) ∈ ℝ)
1715, 16syl 17 . 2 (𝜑 → (2nd ‘(𝐺𝑁)) ∈ ℝ)
186nn0red 12480 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1910nn0red 12480 . . . . . 6 (𝜑𝑁 ∈ ℝ)
20 max1 13121 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2118, 19, 20syl2anc 584 . . . . 5 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
226nn0zd 12531 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2311nn0zd 12531 . . . . . 6 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
24 eluz 12783 . . . . . 6 ((𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2522, 23, 24syl2anc 584 . . . . 5 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
2621, 25mpbird 257 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
271, 2, 3, 4, 6, 26ruclem9 16182 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑀))))
2827simpld 494 . 2 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
29 xp2nd 7980 . . . 4 ((𝐺‘if(𝑀𝑁, 𝑁, 𝑀)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
3012, 29syl 17 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∈ ℝ)
311, 2, 3, 4ruclem8 16181 . . . 4 ((𝜑 ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0) → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
3211, 31mpdan 687 . . 3 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))))
33 max2 13123 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3418, 19, 33syl2anc 584 . . . . . 6 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3510nn0zd 12531 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
36 eluz 12783 . . . . . . 7 ((𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ) → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3735, 23, 36syl2anc 584 . . . . . 6 (𝜑 → (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
3834, 37mpbird 257 . . . . 5 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
391, 2, 3, 4, 10, 38ruclem9 16182 . . . 4 (𝜑 → ((1st ‘(𝐺𝑁)) ≤ (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ∧ (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁))))
4039simprd 495 . . 3 (𝜑 → (2nd ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) ≤ (2nd ‘(𝐺𝑁)))
4114, 30, 17, 32, 40ltletrd 11310 . 2 (𝜑 → (1st ‘(𝐺‘if(𝑀𝑁, 𝑁, 𝑀))) < (2nd ‘(𝐺𝑁)))
429, 14, 17, 28, 41lelttrd 11308 1 (𝜑 → (1st ‘(𝐺𝑀)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  csb 3859  cun 3909  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  ruclem11  16184  ruclem12  16185
  Copyright terms: Public domain W3C validator