Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem5a | Structured version Visualization version GIF version |
Description: Lemma for gausslemma2dlem5 26424. (Contributed by AV, 8-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
Ref | Expression |
---|---|
gausslemma2dlem5a | ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . . 4 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | gausslemma2d.r | . . . 4 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
4 | gausslemma2d.m | . . . 4 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
5 | 1, 2, 3, 4 | gausslemma2dlem3 26421 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
6 | prodeq2 15552 | . . . 4 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2))) | |
7 | 6 | oveq1d 7270 | . . 3 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
9 | eldifi 4057 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
10 | fzfid 13621 | . . . 4 ⊢ (𝑃 ∈ ℙ → ((𝑀 + 1)...𝐻) ∈ Fin) | |
11 | prmz 16308 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ) |
13 | elfzelz 13185 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) | |
14 | 2z 12282 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
16 | 13, 15 | zmulcld 12361 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) |
18 | 12, 17 | zsubcld 12360 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ) |
19 | neg1z 12286 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ) |
21 | 20, 16 | zmulcld 12361 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ) |
23 | prmnn 16307 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
24 | 16 | zcnd 12356 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) |
25 | 24 | mulm1d 11357 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
27 | 26 | oveq1d 7270 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃)) |
28 | 16 | zred 12355 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ) |
29 | 23 | nnrpd 12699 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+) |
30 | negmod 13564 | . . . . . 6 ⊢ (((𝑘 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) | |
31 | 28, 29, 30 | syl2anr 596 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) |
32 | 27, 31 | eqtr2d 2779 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) |
33 | 10, 18, 22, 23, 32 | fprodmodd 15635 | . . 3 ⊢ (𝑃 ∈ ℙ → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
34 | 1, 9, 33 | 3syl 18 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
35 | 8, 34 | eqtrd 2778 | 1 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ifcif 4456 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 4c4 11960 ℤcz 12249 ℝ+crp 12659 ...cfz 13168 ⌊cfl 13438 mod cmo 13517 ∏cprod 15543 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: gausslemma2dlem5 26424 |
Copyright terms: Public domain | W3C validator |