Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem5a | Structured version Visualization version GIF version |
Description: Lemma for gausslemma2dlem5 26517. (Contributed by AV, 8-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
Ref | Expression |
---|---|
gausslemma2dlem5a | ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . . 4 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | gausslemma2d.r | . . . 4 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
4 | gausslemma2d.m | . . . 4 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
5 | 1, 2, 3, 4 | gausslemma2dlem3 26514 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
6 | prodeq2 15622 | . . . 4 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2))) | |
7 | 6 | oveq1d 7286 | . . 3 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
9 | eldifi 4066 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
10 | fzfid 13691 | . . . 4 ⊢ (𝑃 ∈ ℙ → ((𝑀 + 1)...𝐻) ∈ Fin) | |
11 | prmz 16378 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
12 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ) |
13 | elfzelz 13255 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) | |
14 | 2z 12352 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
16 | 13, 15 | zmulcld 12431 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
17 | 16 | adantl 482 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) |
18 | 12, 17 | zsubcld 12430 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ) |
19 | neg1z 12356 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ) |
21 | 20, 16 | zmulcld 12431 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ) |
22 | 21 | adantl 482 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ) |
23 | prmnn 16377 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
24 | 16 | zcnd 12426 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) |
25 | 24 | mulm1d 11427 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
26 | 25 | adantl 482 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
27 | 26 | oveq1d 7286 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃)) |
28 | 16 | zred 12425 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ) |
29 | 23 | nnrpd 12769 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+) |
30 | negmod 13634 | . . . . . 6 ⊢ (((𝑘 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) | |
31 | 28, 29, 30 | syl2anr 597 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) |
32 | 27, 31 | eqtr2d 2781 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) |
33 | 10, 18, 22, 23, 32 | fprodmodd 15705 | . . 3 ⊢ (𝑃 ∈ ℙ → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
34 | 1, 9, 33 | 3syl 18 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
35 | 8, 34 | eqtrd 2780 | 1 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∖ cdif 3889 ifcif 4465 {csn 4567 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 1c1 10873 + caddc 10875 · cmul 10877 < clt 11010 − cmin 11205 -cneg 11206 / cdiv 11632 2c2 12028 4c4 12030 ℤcz 12319 ℝ+crp 12729 ...cfz 13238 ⌊cfl 13508 mod cmo 13587 ∏cprod 15613 ℙcprime 16374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-prod 15614 df-dvds 15962 df-prm 16375 |
This theorem is referenced by: gausslemma2dlem5 26517 |
Copyright terms: Public domain | W3C validator |