|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem5a | Structured version Visualization version GIF version | ||
| Description: Lemma for gausslemma2dlem5 27416. (Contributed by AV, 8-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | 
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) | 
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | 
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | 
| Ref | Expression | 
|---|---|
| gausslemma2dlem5a | ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . . 4 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . . 4 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . . 4 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | 1, 2, 3, 4 | gausslemma2dlem3 27413 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) | 
| 6 | prodeq2 15949 | . . . 4 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2))) | |
| 7 | 6 | oveq1d 7447 | . . 3 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) | 
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) | 
| 9 | eldifi 4130 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 10 | fzfid 14015 | . . . 4 ⊢ (𝑃 ∈ ℙ → ((𝑀 + 1)...𝐻) ∈ Fin) | |
| 11 | prmz 16713 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ) | 
| 13 | elfzelz 13565 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) | |
| 14 | 2z 12651 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) | 
| 16 | 13, 15 | zmulcld 12730 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) | 
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) | 
| 18 | 12, 17 | zsubcld 12729 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ) | 
| 19 | neg1z 12655 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ) | 
| 21 | 20, 16 | zmulcld 12730 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ) | 
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ) | 
| 23 | prmnn 16712 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 24 | 16 | zcnd 12725 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) | 
| 25 | 24 | mulm1d 11716 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) | 
| 26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) | 
| 27 | 26 | oveq1d 7447 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃)) | 
| 28 | 16 | zred 12724 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ) | 
| 29 | 23 | nnrpd 13076 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+) | 
| 30 | negmod 13958 | . . . . . 6 ⊢ (((𝑘 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) | |
| 31 | 28, 29, 30 | syl2anr 597 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) | 
| 32 | 27, 31 | eqtr2d 2777 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) | 
| 33 | 10, 18, 22, 23, 32 | fprodmodd 16034 | . . 3 ⊢ (𝑃 ∈ ℙ → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | 
| 34 | 1, 9, 33 | 3syl 18 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | 
| 35 | 8, 34 | eqtrd 2776 | 1 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∖ cdif 3947 ifcif 4524 {csn 4625 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 + caddc 11159 · cmul 11161 < clt 11296 − cmin 11493 -cneg 11494 / cdiv 11921 2c2 12322 4c4 12324 ℤcz 12615 ℝ+crp 13035 ...cfz 13548 ⌊cfl 13831 mod cmo 13910 ∏cprod 15940 ℙcprime 16709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-prod 15941 df-dvds 16292 df-prm 16710 | 
| This theorem is referenced by: gausslemma2dlem5 27416 | 
| Copyright terms: Public domain | W3C validator |