| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem5a | Structured version Visualization version GIF version | ||
| Description: Lemma for gausslemma2dlem5 27329. (Contributed by AV, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem5a | ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . . 4 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . . 4 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . . 4 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | 1, 2, 3, 4 | gausslemma2dlem3 27326 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) |
| 6 | prodeq2 15826 | . . . 4 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2))) | |
| 7 | 6 | oveq1d 7370 | . . 3 ⊢ (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 9 | eldifi 4080 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 10 | fzfid 13887 | . . . 4 ⊢ (𝑃 ∈ ℙ → ((𝑀 + 1)...𝐻) ∈ Fin) | |
| 11 | prmz 16593 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ) |
| 13 | elfzelz 13431 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ) | |
| 14 | 2z 12514 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ) |
| 16 | 13, 15 | zmulcld 12593 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ) |
| 18 | 12, 17 | zsubcld 12592 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ) |
| 19 | neg1z 12518 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ) |
| 21 | 20, 16 | zmulcld 12593 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ) |
| 23 | prmnn 16592 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 24 | 16 | zcnd 12588 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ) |
| 25 | 24 | mulm1d 11580 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
| 26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2)) |
| 27 | 26 | oveq1d 7370 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃)) |
| 28 | 16 | zred 12587 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ) |
| 29 | 23 | nnrpd 12938 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+) |
| 30 | negmod 13830 | . . . . . 6 ⊢ (((𝑘 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) | |
| 31 | 28, 29, 30 | syl2anr 597 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃)) |
| 32 | 27, 31 | eqtr2d 2769 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃)) |
| 33 | 10, 18, 22, 23, 32 | fprodmodd 15911 | . . 3 ⊢ (𝑃 ∈ ℙ → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| 34 | 1, 9, 33 | 3syl 18 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| 35 | 8, 34 | eqtrd 2768 | 1 ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 − cmin 11355 -cneg 11356 / cdiv 11785 2c2 12191 4c4 12193 ℤcz 12479 ℝ+crp 12896 ...cfz 13414 ⌊cfl 13701 mod cmo 13780 ∏cprod 15817 ℙcprime 16589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-prod 15818 df-dvds 16171 df-prm 16590 |
| This theorem is referenced by: gausslemma2dlem5 27329 |
| Copyright terms: Public domain | W3C validator |