MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gsumfz0 Structured version   Visualization version   GIF version

Theorem nn0gsumfz0 19096
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
nn0gsumfz.y (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
nn0gsumfz0 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹,𝑠   𝑓,𝐺   0 ,𝑓,𝑠   𝜑,𝑓,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐺(𝑠)

Proof of Theorem nn0gsumfz0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0gsumfz.b . . 3 𝐵 = (Base‘𝐺)
2 nn0gsumfz.0 . . 3 0 = (0g𝐺)
3 nn0gsumfz.g . . 3 (𝜑𝐺 ∈ CMnd)
4 nn0gsumfz.f . . 3 (𝜑𝐹 ∈ (𝐵m0))
5 nn0gsumfz.y . . 3 (𝜑𝐹 finSupp 0 )
61, 2, 3, 4, 5nn0gsumfz 19095 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
7 simp3 1135 . . . 4 ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
87reximi 3237 . . 3 (∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
98reximi 3237 . 2 (∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
106, 9syl 17 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  wral 3132  wrex 3133   class class class wbr 5049  cres 5540  cfv 6338  (class class class)co 7140  m cmap 8391   finSupp cfsupp 8819  0cc0 10524   < clt 10662  0cn0 11885  ...cfz 12885  Basecbs 16474  0gc0g 16704   Σg cgsu 16705  CMndccmn 18897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-se 5498  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-isom 6347  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-oi 8960  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-0g 16706  df-gsum 16707  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-cntz 18438  df-cmn 18899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator