Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absexp | Structured version Visualization version GIF version |
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
Ref | Expression |
---|---|
absexp | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7158 | . . . 4 ⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) | |
2 | 1 | fveq2d 6662 | . . 3 ⊢ (𝑗 = 0 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑0))) |
3 | oveq2 7158 | . . 3 ⊢ (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0)) | |
4 | 2, 3 | eqeq12d 2774 | . 2 ⊢ (𝑗 = 0 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))) |
5 | oveq2 7158 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
6 | 5 | fveq2d 6662 | . . 3 ⊢ (𝑗 = 𝑘 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑘))) |
7 | oveq2 7158 | . . 3 ⊢ (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘)) | |
8 | 6, 7 | eqeq12d 2774 | . 2 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘))) |
9 | oveq2 7158 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
10 | 9 | fveq2d 6662 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑(𝑘 + 1)))) |
11 | oveq2 7158 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1))) | |
12 | 10, 11 | eqeq12d 2774 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))) |
13 | oveq2 7158 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
14 | 13 | fveq2d 6662 | . . 3 ⊢ (𝑗 = 𝑁 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑁))) |
15 | oveq2 7158 | . . 3 ⊢ (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁)) | |
16 | 14, 15 | eqeq12d 2774 | . 2 ⊢ (𝑗 = 𝑁 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
17 | abs1 14705 | . . 3 ⊢ (abs‘1) = 1 | |
18 | exp0 13483 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
19 | 18 | fveq2d 6662 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1)) |
20 | abscl 14686 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
21 | 20 | recnd 10707 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
22 | 21 | exp0d 13554 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1) |
23 | 17, 19, 22 | 3eqtr4a 2819 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)) |
24 | oveq1 7157 | . . . 4 ⊢ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
25 | 24 | adantl 485 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
26 | expp1 13486 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | |
27 | 26 | fveq2d 6662 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴↑𝑘) · 𝐴))) |
28 | expcl 13497 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
29 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
30 | absmul 14702 | . . . . . 6 ⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) | |
31 | 28, 29, 30 | syl2anc 587 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
32 | 27, 31 | eqtrd 2793 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
33 | 32 | adantr 484 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
34 | expp1 13486 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
35 | 21, 34 | sylan 583 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
36 | 35 | adantr 484 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
37 | 25, 33, 36 | 3eqtr4d 2803 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
38 | 4, 8, 12, 16, 23, 37 | nn0indd 12118 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 ℕ0cn0 11934 ↑cexp 13479 abscabs 14641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 |
This theorem is referenced by: absexpz 14713 abssq 14714 sqabs 14715 absexpd 14860 expcnv 15267 eftabs 15477 efcllem 15479 efaddlem 15494 iblabsr 24529 iblmulc2 24530 abelthlem7 25132 efif1olem3 25235 efif1olem4 25236 logtayllem 25349 bndatandm 25614 ftalem1 25757 mule1 25832 iblmulc2nc 35424 |
Copyright terms: Public domain | W3C validator |