MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absexp Structured version   Visualization version   GIF version

Theorem absexp 15247
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . 4 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 6844 . . 3 (𝑗 = 0 → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑0)))
3 oveq2 7377 . . 3 (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0))
42, 3eqeq12d 2745 . 2 (𝑗 = 0 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)))
5 oveq2 7377 . . . 4 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65fveq2d 6844 . . 3 (𝑗 = 𝑘 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑘)))
7 oveq2 7377 . . 3 (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘))
86, 7eqeq12d 2745 . 2 (𝑗 = 𝑘 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)))
9 oveq2 7377 . . . 4 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109fveq2d 6844 . . 3 (𝑗 = (𝑘 + 1) → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑(𝑘 + 1))))
11 oveq2 7377 . . 3 (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1)))
1210, 11eqeq12d 2745 . 2 (𝑗 = (𝑘 + 1) → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))
13 oveq2 7377 . . . 4 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413fveq2d 6844 . . 3 (𝑗 = 𝑁 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑁)))
15 oveq2 7377 . . 3 (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁))
1614, 15eqeq12d 2745 . 2 (𝑗 = 𝑁 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
17 abs1 15240 . . 3 (abs‘1) = 1
18 exp0 14008 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
1918fveq2d 6844 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1))
20 abscl 15221 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2120recnd 11180 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
2221exp0d 14083 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1)
2317, 19, 223eqtr4a 2790 . 2 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))
24 oveq1 7376 . . . 4 ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
2524adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
26 expp1 14011 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2726fveq2d 6844 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴𝑘) · 𝐴)))
28 expcl 14022 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
29 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
30 absmul 15237 . . . . . 6 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3128, 29, 30syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3227, 31eqtrd 2764 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3332adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
34 expp1 14011 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3521, 34sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3635adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3725, 33, 363eqtr4d 2774 . 2 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
384, 8, 12, 16, 23, 37nn0indd 12609 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11044  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051  0cn0 12420  cexp 14004  abscabs 15177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179
This theorem is referenced by:  absexpz  15248  abssq  15249  sqabs  15250  absexpd  15398  expcnv  15807  eftabs  16018  efcllem  16020  efaddlem  16036  iblabsr  25765  iblmulc2  25766  abelthlem7  26382  efif1olem3  26487  efif1olem4  26488  logtayllem  26602  bndatandm  26873  ftalem1  27017  mule1  27092  iblmulc2nc  37673
  Copyright terms: Public domain W3C validator