MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absexp Structured version   Visualization version   GIF version

Theorem absexp 14654
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7156 . . . 4 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 6671 . . 3 (𝑗 = 0 → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑0)))
3 oveq2 7156 . . 3 (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0))
42, 3eqeq12d 2842 . 2 (𝑗 = 0 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)))
5 oveq2 7156 . . . 4 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65fveq2d 6671 . . 3 (𝑗 = 𝑘 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑘)))
7 oveq2 7156 . . 3 (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘))
86, 7eqeq12d 2842 . 2 (𝑗 = 𝑘 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)))
9 oveq2 7156 . . . 4 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109fveq2d 6671 . . 3 (𝑗 = (𝑘 + 1) → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑(𝑘 + 1))))
11 oveq2 7156 . . 3 (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1)))
1210, 11eqeq12d 2842 . 2 (𝑗 = (𝑘 + 1) → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))
13 oveq2 7156 . . . 4 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413fveq2d 6671 . . 3 (𝑗 = 𝑁 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑁)))
15 oveq2 7156 . . 3 (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁))
1614, 15eqeq12d 2842 . 2 (𝑗 = 𝑁 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
17 abs1 14647 . . 3 (abs‘1) = 1
18 exp0 13423 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
1918fveq2d 6671 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1))
20 abscl 14628 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2120recnd 10658 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
2221exp0d 13494 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1)
2317, 19, 223eqtr4a 2887 . 2 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))
24 oveq1 7155 . . . 4 ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
2524adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
26 expp1 13426 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2726fveq2d 6671 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴𝑘) · 𝐴)))
28 expcl 13437 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
29 simpl 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
30 absmul 14644 . . . . . 6 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3128, 29, 30syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3227, 31eqtrd 2861 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3332adantr 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
34 expp1 13426 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3521, 34sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3635adantr 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3725, 33, 363eqtr4d 2871 . 2 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
384, 8, 12, 16, 23, 37nn0indd 12068 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  0cn0 11886  cexp 13419  abscabs 14583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585
This theorem is referenced by:  absexpz  14655  abssq  14656  sqabs  14657  absexpd  14802  expcnv  15209  eftabs  15419  efcllem  15421  efaddlem  15436  iblabsr  24345  iblmulc2  24346  abelthlem7  24941  efif1olem3  25041  efif1olem4  25042  logtayllem  25155  bndatandm  25420  ftalem1  25564  mule1  25639  iblmulc2nc  34824
  Copyright terms: Public domain W3C validator