| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absexp | Structured version Visualization version GIF version | ||
| Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
| Ref | Expression |
|---|---|
| absexp | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . . . 4 ⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) | |
| 2 | 1 | fveq2d 6844 | . . 3 ⊢ (𝑗 = 0 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑0))) |
| 3 | oveq2 7377 | . . 3 ⊢ (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0)) | |
| 4 | 2, 3 | eqeq12d 2745 | . 2 ⊢ (𝑗 = 0 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))) |
| 5 | oveq2 7377 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
| 6 | 5 | fveq2d 6844 | . . 3 ⊢ (𝑗 = 𝑘 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑘))) |
| 7 | oveq2 7377 | . . 3 ⊢ (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘)) | |
| 8 | 6, 7 | eqeq12d 2745 | . 2 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘))) |
| 9 | oveq2 7377 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
| 10 | 9 | fveq2d 6844 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑(𝑘 + 1)))) |
| 11 | oveq2 7377 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1))) | |
| 12 | 10, 11 | eqeq12d 2745 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))) |
| 13 | oveq2 7377 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
| 14 | 13 | fveq2d 6844 | . . 3 ⊢ (𝑗 = 𝑁 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑁))) |
| 15 | oveq2 7377 | . . 3 ⊢ (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁)) | |
| 16 | 14, 15 | eqeq12d 2745 | . 2 ⊢ (𝑗 = 𝑁 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
| 17 | abs1 15240 | . . 3 ⊢ (abs‘1) = 1 | |
| 18 | exp0 14008 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 19 | 18 | fveq2d 6844 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1)) |
| 20 | abscl 15221 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 21 | 20 | recnd 11180 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
| 22 | 21 | exp0d 14083 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1) |
| 23 | 17, 19, 22 | 3eqtr4a 2790 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)) |
| 24 | oveq1 7376 | . . . 4 ⊢ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
| 26 | expp1 14011 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | |
| 27 | 26 | fveq2d 6844 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴↑𝑘) · 𝐴))) |
| 28 | expcl 14022 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
| 29 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
| 30 | absmul 15237 | . . . . . 6 ⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) | |
| 31 | 28, 29, 30 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
| 32 | 27, 31 | eqtrd 2764 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
| 33 | 32 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
| 34 | expp1 14011 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
| 35 | 21, 34 | sylan 580 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
| 36 | 35 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
| 37 | 25, 33, 36 | 3eqtr4d 2774 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
| 38 | 4, 8, 12, 16, 23, 37 | nn0indd 12609 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 0cc0 11046 1c1 11047 + caddc 11049 · cmul 11051 ℕ0cn0 12420 ↑cexp 14004 abscabs 15177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 |
| This theorem is referenced by: absexpz 15248 abssq 15249 sqabs 15250 absexpd 15398 expcnv 15807 eftabs 16018 efcllem 16020 efaddlem 16036 iblabsr 25765 iblmulc2 25766 abelthlem7 26382 efif1olem3 26487 efif1olem4 26488 logtayllem 26602 bndatandm 26873 ftalem1 27017 mule1 27092 iblmulc2nc 37673 |
| Copyright terms: Public domain | W3C validator |