![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absexp | Structured version Visualization version GIF version |
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
Ref | Expression |
---|---|
absexp | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7359 | . . . 4 ⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) | |
2 | 1 | fveq2d 6843 | . . 3 ⊢ (𝑗 = 0 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑0))) |
3 | oveq2 7359 | . . 3 ⊢ (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0)) | |
4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ (𝑗 = 0 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))) |
5 | oveq2 7359 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
6 | 5 | fveq2d 6843 | . . 3 ⊢ (𝑗 = 𝑘 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑘))) |
7 | oveq2 7359 | . . 3 ⊢ (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘)) | |
8 | 6, 7 | eqeq12d 2753 | . 2 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘))) |
9 | oveq2 7359 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
10 | 9 | fveq2d 6843 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑(𝑘 + 1)))) |
11 | oveq2 7359 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1))) | |
12 | 10, 11 | eqeq12d 2753 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))) |
13 | oveq2 7359 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
14 | 13 | fveq2d 6843 | . . 3 ⊢ (𝑗 = 𝑁 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑁))) |
15 | oveq2 7359 | . . 3 ⊢ (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁)) | |
16 | 14, 15 | eqeq12d 2753 | . 2 ⊢ (𝑗 = 𝑁 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
17 | abs1 15142 | . . 3 ⊢ (abs‘1) = 1 | |
18 | exp0 13925 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
19 | 18 | fveq2d 6843 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1)) |
20 | abscl 15123 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
21 | 20 | recnd 11141 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
22 | 21 | exp0d 13999 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1) |
23 | 17, 19, 22 | 3eqtr4a 2803 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)) |
24 | oveq1 7358 | . . . 4 ⊢ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
25 | 24 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
26 | expp1 13928 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | |
27 | 26 | fveq2d 6843 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴↑𝑘) · 𝐴))) |
28 | expcl 13939 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
29 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
30 | absmul 15139 | . . . . . 6 ⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) | |
31 | 28, 29, 30 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
32 | 27, 31 | eqtrd 2777 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
33 | 32 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
34 | expp1 13928 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
35 | 21, 34 | sylan 580 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
36 | 35 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
37 | 25, 33, 36 | 3eqtr4d 2787 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
38 | 4, 8, 12, 16, 23, 37 | nn0indd 12558 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6493 (class class class)co 7351 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ℕ0cn0 12371 ↑cexp 13921 abscabs 15079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-sup 9336 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-n0 12372 df-z 12458 df-uz 12722 df-rp 12870 df-seq 13861 df-exp 13922 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 |
This theorem is referenced by: absexpz 15150 abssq 15151 sqabs 15152 absexpd 15297 expcnv 15709 eftabs 15918 efcllem 15920 efaddlem 15935 iblabsr 25146 iblmulc2 25147 abelthlem7 25749 efif1olem3 25852 efif1olem4 25853 logtayllem 25966 bndatandm 26231 ftalem1 26374 mule1 26449 iblmulc2nc 36081 |
Copyright terms: Public domain | W3C validator |