Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absexp | Structured version Visualization version GIF version |
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
Ref | Expression |
---|---|
absexp | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7315 | . . . 4 ⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) | |
2 | 1 | fveq2d 6808 | . . 3 ⊢ (𝑗 = 0 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑0))) |
3 | oveq2 7315 | . . 3 ⊢ (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0)) | |
4 | 2, 3 | eqeq12d 2752 | . 2 ⊢ (𝑗 = 0 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))) |
5 | oveq2 7315 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
6 | 5 | fveq2d 6808 | . . 3 ⊢ (𝑗 = 𝑘 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑘))) |
7 | oveq2 7315 | . . 3 ⊢ (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘)) | |
8 | 6, 7 | eqeq12d 2752 | . 2 ⊢ (𝑗 = 𝑘 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘))) |
9 | oveq2 7315 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
10 | 9 | fveq2d 6808 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑(𝑘 + 1)))) |
11 | oveq2 7315 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1))) | |
12 | 10, 11 | eqeq12d 2752 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))) |
13 | oveq2 7315 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
14 | 13 | fveq2d 6808 | . . 3 ⊢ (𝑗 = 𝑁 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑁))) |
15 | oveq2 7315 | . . 3 ⊢ (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁)) | |
16 | 14, 15 | eqeq12d 2752 | . 2 ⊢ (𝑗 = 𝑁 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
17 | abs1 15058 | . . 3 ⊢ (abs‘1) = 1 | |
18 | exp0 13836 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
19 | 18 | fveq2d 6808 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1)) |
20 | abscl 15039 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
21 | 20 | recnd 11053 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
22 | 21 | exp0d 13908 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1) |
23 | 17, 19, 22 | 3eqtr4a 2802 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)) |
24 | oveq1 7314 | . . . 4 ⊢ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
25 | 24 | adantl 483 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
26 | expp1 13839 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | |
27 | 26 | fveq2d 6808 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴↑𝑘) · 𝐴))) |
28 | expcl 13850 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
29 | simpl 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
30 | absmul 15055 | . . . . . 6 ⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) | |
31 | 28, 29, 30 | syl2anc 585 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
32 | 27, 31 | eqtrd 2776 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
33 | 32 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
34 | expp1 13839 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) | |
35 | 21, 34 | sylan 581 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
36 | 35 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
37 | 25, 33, 36 | 3eqtr4d 2786 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
38 | 4, 8, 12, 16, 23, 37 | nn0indd 12467 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 ℕ0cn0 12283 ↑cexp 13832 abscabs 14994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 |
This theorem is referenced by: absexpz 15066 abssq 15067 sqabs 15068 absexpd 15213 expcnv 15625 eftabs 15834 efcllem 15836 efaddlem 15851 iblabsr 25043 iblmulc2 25044 abelthlem7 25646 efif1olem3 25749 efif1olem4 25750 logtayllem 25863 bndatandm 26128 ftalem1 26271 mule1 26346 iblmulc2nc 35890 |
Copyright terms: Public domain | W3C validator |