![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normlem4 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem2.4 | ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) |
normlem3.5 | ⊢ 𝐴 = (𝐺 ·ih 𝐺) |
normlem3.6 | ⊢ 𝐶 = (𝐹 ·ih 𝐹) |
normlem4.7 | ⊢ 𝑅 ∈ ℝ |
normlem4.8 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem4 | ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . 3 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . 3 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . 3 ⊢ 𝐺 ∈ ℋ | |
4 | normlem4.7 | . . 3 ⊢ 𝑅 ∈ ℝ | |
5 | normlem4.8 | . . 3 ⊢ (abs‘𝑆) = 1 | |
6 | 1, 2, 3, 4, 5 | normlem1 30341 | . 2 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
7 | normlem2.4 | . . 3 ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
8 | normlem3.5 | . . 3 ⊢ 𝐴 = (𝐺 ·ih 𝐺) | |
9 | normlem3.6 | . . 3 ⊢ 𝐶 = (𝐹 ·ih 𝐹) | |
10 | 1, 2, 3, 7, 8, 9, 4 | normlem3 30343 | . 2 ⊢ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) |
11 | 6, 10 | eqtr4i 2764 | 1 ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 ℝcr 11105 1c1 11107 + caddc 11109 · cmul 11111 -cneg 11441 2c2 12263 ↑cexp 14023 ∗ccj 15039 abscabs 15177 ℋchba 30150 ·ℎ csm 30152 ·ih csp 30153 −ℎ cmv 30156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-hfvadd 30231 ax-hfvmul 30236 ax-hvmulass 30238 ax-hfi 30310 ax-his1 30313 ax-his2 30314 ax-his3 30315 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-hvsub 30202 |
This theorem is referenced by: normlem5 30345 |
Copyright terms: Public domain | W3C validator |