Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > catcco | Structured version Visualization version GIF version |
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
catcco.o | ⊢ · = (comp‘𝐶) |
catcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
catcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
catcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
catcco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) |
catcco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) |
Ref | Expression |
---|---|
catcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcbas.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
2 | catcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | catcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | catcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | catccofval 17735 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) |
6 | simprl 767 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | catcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | catcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | op2ndg 7817 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
15 | 13, 14 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) Func 𝑧) = (𝑌 Func 𝑍)) |
16 | 6 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = ( Func ‘〈𝑋, 𝑌〉)) |
17 | df-ov 7258 | . . . . 5 ⊢ (𝑋 Func 𝑌) = ( Func ‘〈𝑋, 𝑌〉) | |
18 | 16, 17 | eqtr4di 2797 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = (𝑋 Func 𝑌)) |
19 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘func 𝑓) = (𝑔 ∘func 𝑓)) | |
20 | 15, 18, 19 | mpoeq123dv 7328 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
21 | 8, 9 | opelxpd 5618 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
22 | catcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
23 | ovex 7288 | . . . . 5 ⊢ (𝑌 Func 𝑍) ∈ V | |
24 | ovex 7288 | . . . . 5 ⊢ (𝑋 Func 𝑌) ∈ V | |
25 | 23, 24 | mpoex 7893 | . . . 4 ⊢ (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V) |
27 | 5, 20, 21, 22, 26 | ovmpod 7403 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
28 | oveq12 7264 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) | |
29 | 28 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) |
30 | catcco.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) | |
31 | catcco.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) | |
32 | ovexd 7290 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ V) | |
33 | 27, 29, 30, 31, 32 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2nd c2nd 7803 Basecbs 16840 compcco 16900 Func cfunc 17485 ∘func ccofu 17487 CatCatccatc 17729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-catc 17730 |
This theorem is referenced by: catccatid 17737 resscatc 17740 catcisolem 17741 catciso 17742 |
Copyright terms: Public domain | W3C validator |