![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > catcco | Structured version Visualization version GIF version |
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
catcco.o | ⊢ · = (comp‘𝐶) |
catcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
catcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
catcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
catcco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) |
catcco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) |
Ref | Expression |
---|---|
catcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcbas.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
2 | catcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | catcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | catcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | catccofval 18171 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) |
6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | catcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | catcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | op2ndg 8043 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
15 | 13, 14 | oveq12d 7466 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) Func 𝑧) = (𝑌 Func 𝑍)) |
16 | 6 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = ( Func ‘〈𝑋, 𝑌〉)) |
17 | df-ov 7451 | . . . . 5 ⊢ (𝑋 Func 𝑌) = ( Func ‘〈𝑋, 𝑌〉) | |
18 | 16, 17 | eqtr4di 2798 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = (𝑋 Func 𝑌)) |
19 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘func 𝑓) = (𝑔 ∘func 𝑓)) | |
20 | 15, 18, 19 | mpoeq123dv 7525 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
21 | 8, 9 | opelxpd 5739 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
22 | catcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
23 | ovex 7481 | . . . . 5 ⊢ (𝑌 Func 𝑍) ∈ V | |
24 | ovex 7481 | . . . . 5 ⊢ (𝑋 Func 𝑌) ∈ V | |
25 | 23, 24 | mpoex 8120 | . . . 4 ⊢ (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V) |
27 | 5, 20, 21, 22, 26 | ovmpod 7602 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
28 | oveq12 7457 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) | |
29 | 28 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) |
30 | catcco.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) | |
31 | catcco.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) | |
32 | ovexd 7483 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ V) | |
33 | 27, 29, 30, 31, 32 | ovmpod 7602 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 2nd c2nd 8029 Basecbs 17258 compcco 17323 Func cfunc 17918 ∘func ccofu 17920 CatCatccatc 18165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-hom 17335 df-cco 17336 df-catc 18166 |
This theorem is referenced by: catccatid 18173 resscatc 18176 catcisolem 18177 catciso 18178 |
Copyright terms: Public domain | W3C validator |