| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catcco | Structured version Visualization version GIF version | ||
| Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| catcco.o | ⊢ · = (comp‘𝐶) |
| catcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| catcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| catcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| catcco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) |
| catcco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) |
| Ref | Expression |
|---|---|
| catcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 2 | catcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | catcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | catcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 5 | 1, 2, 3, 4 | catccofval 18011 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
| 7 | 6 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
| 8 | catcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | catcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | op2ndg 7934 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 13 | 7, 12 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
| 14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
| 15 | 13, 14 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) Func 𝑧) = (𝑌 Func 𝑍)) |
| 16 | 6 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = ( Func ‘〈𝑋, 𝑌〉)) |
| 17 | df-ov 7349 | . . . . 5 ⊢ (𝑋 Func 𝑌) = ( Func ‘〈𝑋, 𝑌〉) | |
| 18 | 16, 17 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = (𝑋 Func 𝑌)) |
| 19 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘func 𝑓) = (𝑔 ∘func 𝑓)) | |
| 20 | 15, 18, 19 | mpoeq123dv 7421 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
| 21 | 8, 9 | opelxpd 5653 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 22 | catcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | ovex 7379 | . . . . 5 ⊢ (𝑌 Func 𝑍) ∈ V | |
| 24 | ovex 7379 | . . . . 5 ⊢ (𝑋 Func 𝑌) ∈ V | |
| 25 | 23, 24 | mpoex 8011 | . . . 4 ⊢ (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V) |
| 27 | 5, 20, 21, 22, 26 | ovmpod 7498 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
| 28 | oveq12 7355 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) | |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) |
| 30 | catcco.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) | |
| 31 | catcco.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) | |
| 32 | ovexd 7381 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ V) | |
| 33 | 27, 29, 30, 31, 32 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 2nd c2nd 7920 Basecbs 17120 compcco 17173 Func cfunc 17761 ∘func ccofu 17763 CatCatccatc 18005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-catc 18006 |
| This theorem is referenced by: catccatid 18013 resscatc 18016 catcisolem 18017 catciso 18018 catcsect 49509 |
| Copyright terms: Public domain | W3C validator |