Step | Hyp | Ref
| Expression |
1 | | catcbas.c |
. . . 4
β’ πΆ = (CatCatβπ) |
2 | | catcbas.b |
. . . 4
β’ π΅ = (BaseβπΆ) |
3 | | catcbas.u |
. . . 4
β’ (π β π β π) |
4 | | catcco.o |
. . . 4
β’ Β· =
(compβπΆ) |
5 | 1, 2, 3, 4 | catccofval 17950 |
. . 3
β’ (π β Β· = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))) |
6 | | simprl 769 |
. . . . . . 7
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β π£ = β¨π, πβ©) |
7 | 6 | fveq2d 6843 |
. . . . . 6
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd βπ£) = (2nd
ββ¨π, πβ©)) |
8 | | catcco.x |
. . . . . . . 8
β’ (π β π β π΅) |
9 | | catcco.y |
. . . . . . . 8
β’ (π β π β π΅) |
10 | | op2ndg 7926 |
. . . . . . . 8
β’ ((π β π΅ β§ π β π΅) β (2nd ββ¨π, πβ©) = π) |
11 | 8, 9, 10 | syl2anc 584 |
. . . . . . 7
β’ (π β (2nd
ββ¨π, πβ©) = π) |
12 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd ββ¨π, πβ©) = π) |
13 | 7, 12 | eqtrd 2777 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (2nd βπ£) = π) |
14 | | simprr 771 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β π§ = π) |
15 | 13, 14 | oveq12d 7369 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β ((2nd βπ£) Func π§) = (π Func π)) |
16 | 6 | fveq2d 6843 |
. . . . 5
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β ( Func βπ£) = ( Func ββ¨π, πβ©)) |
17 | | df-ov 7354 |
. . . . 5
β’ (π Func π) = ( Func ββ¨π, πβ©) |
18 | 16, 17 | eqtr4di 2795 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β ( Func βπ£) = (π Func π)) |
19 | | eqidd 2738 |
. . . 4
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (π βfunc π) = (π βfunc π)) |
20 | 15, 18, 19 | mpoeq123dv 7426 |
. . 3
β’ ((π β§ (π£ = β¨π, πβ© β§ π§ = π)) β (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)) = (π β (π Func π), π β (π Func π) β¦ (π βfunc π))) |
21 | 8, 9 | opelxpd 5669 |
. . 3
β’ (π β β¨π, πβ© β (π΅ Γ π΅)) |
22 | | catcco.z |
. . 3
β’ (π β π β π΅) |
23 | | ovex 7384 |
. . . . 5
β’ (π Func π) β V |
24 | | ovex 7384 |
. . . . 5
β’ (π Func π) β V |
25 | 23, 24 | mpoex 8004 |
. . . 4
β’ (π β (π Func π), π β (π Func π) β¦ (π βfunc π)) β V |
26 | 25 | a1i 11 |
. . 3
β’ (π β (π β (π Func π), π β (π Func π) β¦ (π βfunc π)) β V) |
27 | 5, 20, 21, 22, 26 | ovmpod 7501 |
. 2
β’ (π β (β¨π, πβ© Β· π) = (π β (π Func π), π β (π Func π) β¦ (π βfunc π))) |
28 | | oveq12 7360 |
. . 3
β’ ((π = πΊ β§ π = πΉ) β (π βfunc π) = (πΊ βfunc πΉ)) |
29 | 28 | adantl 482 |
. 2
β’ ((π β§ (π = πΊ β§ π = πΉ)) β (π βfunc π) = (πΊ βfunc πΉ)) |
30 | | catcco.g |
. 2
β’ (π β πΊ β (π Func π)) |
31 | | catcco.f |
. 2
β’ (π β πΉ β (π Func π)) |
32 | | ovexd 7386 |
. 2
β’ (π β (πΊ βfunc πΉ) β V) |
33 | 27, 29, 30, 31, 32 | ovmpod 7501 |
1
β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) = (πΊ βfunc πΉ)) |