Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvsca | Structured version Visualization version GIF version |
Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
dvhfvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhfvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhfvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhfvsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhfvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
Ref | Expression |
---|---|
dvhopvsca | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
2 | simpr1 1192 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑅 ∈ 𝐸) | |
3 | simpr2 1193 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
4 | simpr3 1194 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑋 ∈ 𝐸) | |
5 | opelxpi 5617 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) | |
6 | 3, 4, 5 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) |
7 | dvhfvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | dvhfvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | dvhfvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
10 | dvhfvsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dvhfvsca.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
12 | 7, 8, 9, 10, 11 | dvhvsca 39042 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸))) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
13 | 1, 2, 6, 12 | syl12anc 833 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
14 | op1stg 7816 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) | |
15 | 3, 4, 14 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) |
16 | 15 | fveq2d 6760 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅‘(1st ‘〈𝐹, 𝑋〉)) = (𝑅‘𝐹)) |
17 | op2ndg 7817 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) | |
18 | 3, 4, 17 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) |
19 | 18 | coeq2d 5760 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉)) = (𝑅 ∘ 𝑋)) |
20 | 16, 19 | opeq12d 4809 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
21 | 13, 20 | eqtrd 2778 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ·𝑠 cvsca 16892 LHypclh 37925 LTrncltrn 38042 TEndoctendo 38693 DVecHcdvh 39019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-sca 16904 df-vsca 16905 df-dvech 39020 |
This theorem is referenced by: dvhlveclem 39049 dib1dim2 39109 diclspsn 39135 dih1dimatlem 39270 |
Copyright terms: Public domain | W3C validator |