Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvsca | Structured version Visualization version GIF version |
Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
dvhfvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhfvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhfvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhfvsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhfvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
Ref | Expression |
---|---|
dvhopvsca | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
2 | simpr1 1193 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑅 ∈ 𝐸) | |
3 | simpr2 1194 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
4 | simpr3 1195 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑋 ∈ 𝐸) | |
5 | opelxpi 5626 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) |
7 | dvhfvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | dvhfvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | dvhfvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
10 | dvhfvsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dvhfvsca.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
12 | 7, 8, 9, 10, 11 | dvhvsca 39115 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸))) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
13 | 1, 2, 6, 12 | syl12anc 834 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
14 | op1stg 7843 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) | |
15 | 3, 4, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) |
16 | 15 | fveq2d 6778 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅‘(1st ‘〈𝐹, 𝑋〉)) = (𝑅‘𝐹)) |
17 | op2ndg 7844 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) | |
18 | 3, 4, 17 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) |
19 | 18 | coeq2d 5771 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉)) = (𝑅 ∘ 𝑋)) |
20 | 16, 19 | opeq12d 4812 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
21 | 13, 20 | eqtrd 2778 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 ·𝑠 cvsca 16966 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 DVecHcdvh 39092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-sca 16978 df-vsca 16979 df-dvech 39093 |
This theorem is referenced by: dvhlveclem 39122 dib1dim2 39182 diclspsn 39208 dih1dimatlem 39343 |
Copyright terms: Public domain | W3C validator |