![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvsca | Structured version Visualization version GIF version |
Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
dvhfvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhfvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhfvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhfvsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhfvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
Ref | Expression |
---|---|
dvhopvsca | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
2 | simpr1 1194 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑅 ∈ 𝐸) | |
3 | simpr2 1195 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
4 | simpr3 1196 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑋 ∈ 𝐸) | |
5 | opelxpi 5670 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) |
7 | dvhfvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | dvhfvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | dvhfvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
10 | dvhfvsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dvhfvsca.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
12 | 7, 8, 9, 10, 11 | dvhvsca 39564 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸))) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
13 | 1, 2, 6, 12 | syl12anc 835 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
14 | op1stg 7933 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) | |
15 | 3, 4, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) |
16 | 15 | fveq2d 6846 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅‘(1st ‘〈𝐹, 𝑋〉)) = (𝑅‘𝐹)) |
17 | op2ndg 7934 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) | |
18 | 3, 4, 17 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) |
19 | 18 | coeq2d 5818 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉)) = (𝑅 ∘ 𝑋)) |
20 | 16, 19 | opeq12d 4838 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
21 | 13, 20 | eqtrd 2776 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 〈cop 4592 × cxp 5631 ∘ ccom 5637 ‘cfv 6496 (class class class)co 7357 1st c1st 7919 2nd c2nd 7920 ·𝑠 cvsca 17137 LHypclh 38447 LTrncltrn 38564 TEndoctendo 39215 DVecHcdvh 39541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-sca 17149 df-vsca 17150 df-dvech 39542 |
This theorem is referenced by: dvhlveclem 39571 dib1dim2 39631 diclspsn 39657 dih1dimatlem 39792 |
Copyright terms: Public domain | W3C validator |