| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvsca | Structured version Visualization version GIF version | ||
| Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| dvhfvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhfvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhfvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhfvsca.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvhfvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
| Ref | Expression |
|---|---|
| dvhopvsca | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simpr1 1195 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑅 ∈ 𝐸) | |
| 3 | simpr2 1196 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝐹 ∈ 𝑇) | |
| 4 | simpr3 1197 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 𝑋 ∈ 𝐸) | |
| 5 | opelxpi 5675 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸)) |
| 7 | dvhfvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | dvhfvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | dvhfvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 10 | dvhfvsca.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 11 | dvhfvsca.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 12 | 7, 8, 9, 10, 11 | dvhvsca 41095 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 〈𝐹, 𝑋〉 ∈ (𝑇 × 𝐸))) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
| 13 | 1, 2, 6, 12 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉) |
| 14 | op1stg 7980 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) | |
| 15 | 3, 4, 14 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (1st ‘〈𝐹, 𝑋〉) = 𝐹) |
| 16 | 15 | fveq2d 6862 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅‘(1st ‘〈𝐹, 𝑋〉)) = (𝑅‘𝐹)) |
| 17 | op2ndg 7981 | . . . . 5 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) | |
| 18 | 3, 4, 17 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (2nd ‘〈𝐹, 𝑋〉) = 𝑋) |
| 19 | 18 | coeq2d 5826 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉)) = (𝑅 ∘ 𝑋)) |
| 20 | 16, 19 | opeq12d 4845 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → 〈(𝑅‘(1st ‘〈𝐹, 𝑋〉)), (𝑅 ∘ (2nd ‘〈𝐹, 𝑋〉))〉 = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
| 21 | 13, 20 | eqtrd 2764 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ·𝑠 cvsca 17224 LHypclh 39978 LTrncltrn 40095 TEndoctendo 40746 DVecHcdvh 41072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-sca 17236 df-vsca 17237 df-dvech 41073 |
| This theorem is referenced by: dvhlveclem 41102 dib1dim2 41162 diclspsn 41188 dih1dimatlem 41323 |
| Copyright terms: Public domain | W3C validator |