MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2 Structured version   Visualization version   GIF version

Theorem xpcco2 18148
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpcco2.o1 · = (comp‘𝐶)
xpcco2.o2 = (comp‘𝐷)
xpcco2.o 𝑂 = (comp‘𝑇)
xpcco2.r (𝜑𝑅𝑋)
xpcco2.s (𝜑𝑆𝑌)
xpcco2.f (𝜑𝐹 ∈ (𝑀𝐻𝑃))
xpcco2.g (𝜑𝐺 ∈ (𝑁𝐽𝑄))
xpcco2.k (𝜑𝐾 ∈ (𝑃𝐻𝑅))
xpcco2.l (𝜑𝐿 ∈ (𝑄𝐽𝑆))
Assertion
Ref Expression
xpcco2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)

Proof of Theorem xpcco2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 18139 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 eqid 2729 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
6 xpcco2.o1 . . 3 · = (comp‘𝐶)
7 xpcco2.o2 . . 3 = (comp‘𝐷)
8 xpcco2.o . . 3 𝑂 = (comp‘𝑇)
9 xpcco2.m . . . 4 (𝜑𝑀𝑋)
10 xpcco2.n . . . 4 (𝜑𝑁𝑌)
119, 10opelxpd 5677 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
12 xpcco2.p . . . 4 (𝜑𝑃𝑋)
13 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1412, 13opelxpd 5677 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
15 xpcco2.r . . . 4 (𝜑𝑅𝑋)
16 xpcco2.s . . . 4 (𝜑𝑆𝑌)
1715, 16opelxpd 5677 . . 3 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌))
18 xpcco2.f . . . . 5 (𝜑𝐹 ∈ (𝑀𝐻𝑃))
19 xpcco2.g . . . . 5 (𝜑𝐺 ∈ (𝑁𝐽𝑄))
2018, 19opelxpd 5677 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
21 xpcco2.h . . . . 5 𝐻 = (Hom ‘𝐶)
22 xpcco2.j . . . . 5 𝐽 = (Hom ‘𝐷)
231, 2, 3, 21, 22, 9, 10, 12, 13, 5xpchom2 18147 . . . 4 (𝜑 → (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2420, 23eleqtrrd 2831 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩))
25 xpcco2.k . . . . 5 (𝜑𝐾 ∈ (𝑃𝐻𝑅))
26 xpcco2.l . . . . 5 (𝜑𝐿 ∈ (𝑄𝐽𝑆))
2725, 26opelxpd 5677 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
281, 2, 3, 21, 22, 12, 13, 15, 16, 5xpchom2 18147 . . . 4 (𝜑 → (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩) = ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
2927, 28eleqtrrd 2831 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩))
301, 4, 5, 6, 7, 8, 11, 14, 17, 24, 29xpcco 18144 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩)
31 op1stg 7980 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
329, 10, 31syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
33 op1stg 7980 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3412, 13, 33syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3532, 34opeq12d 4845 . . . . 5 (𝜑 → ⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑀, 𝑃⟩)
36 op1stg 7980 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3715, 16, 36syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3835, 37oveq12d 7405 . . . 4 (𝜑 → (⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩)) = (⟨𝑀, 𝑃· 𝑅))
39 op1stg 7980 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4025, 26, 39syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
41 op1stg 7980 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4218, 19, 41syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4338, 40, 42oveq123d 7408 . . 3 (𝜑 → ((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)) = (𝐾(⟨𝑀, 𝑃· 𝑅)𝐹))
44 op2ndg 7981 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
459, 10, 44syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
46 op2ndg 7981 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4712, 13, 46syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4845, 47opeq12d 4845 . . . . 5 (𝜑 → ⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑁, 𝑄⟩)
49 op2ndg 7981 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5015, 16, 49syl2anc 584 . . . . 5 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5148, 50oveq12d 7405 . . . 4 (𝜑 → (⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩)) = (⟨𝑁, 𝑄 𝑆))
52 op2ndg 7981 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5325, 26, 52syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
54 op2ndg 7981 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5518, 19, 54syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5651, 53, 55oveq123d 7408 . . 3 (𝜑 → ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩)) = (𝐿(⟨𝑁, 𝑄 𝑆)𝐺))
5743, 56opeq12d 4845 . 2 (𝜑 → ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩ = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
5830, 57eqtrd 2764 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232   ×c cxpc 18129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-xpc 18133
This theorem is referenced by:  prfcl  18164  evlfcllem  18182  curf1cl  18189  curf2cl  18192  curfcl  18193  uncfcurf  18200  hofcl  18220  xpcfucco2  49245
  Copyright terms: Public domain W3C validator