MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2 Structured version   Visualization version   GIF version

Theorem xpcco2 17892
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpcco2.o1 · = (comp‘𝐶)
xpcco2.o2 = (comp‘𝐷)
xpcco2.o 𝑂 = (comp‘𝑇)
xpcco2.r (𝜑𝑅𝑋)
xpcco2.s (𝜑𝑆𝑌)
xpcco2.f (𝜑𝐹 ∈ (𝑀𝐻𝑃))
xpcco2.g (𝜑𝐺 ∈ (𝑁𝐽𝑄))
xpcco2.k (𝜑𝐾 ∈ (𝑃𝐻𝑅))
xpcco2.l (𝜑𝐿 ∈ (𝑄𝐽𝑆))
Assertion
Ref Expression
xpcco2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)

Proof of Theorem xpcco2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 17883 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 eqid 2738 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
6 xpcco2.o1 . . 3 · = (comp‘𝐶)
7 xpcco2.o2 . . 3 = (comp‘𝐷)
8 xpcco2.o . . 3 𝑂 = (comp‘𝑇)
9 xpcco2.m . . . 4 (𝜑𝑀𝑋)
10 xpcco2.n . . . 4 (𝜑𝑁𝑌)
119, 10opelxpd 5623 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
12 xpcco2.p . . . 4 (𝜑𝑃𝑋)
13 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1412, 13opelxpd 5623 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
15 xpcco2.r . . . 4 (𝜑𝑅𝑋)
16 xpcco2.s . . . 4 (𝜑𝑆𝑌)
1715, 16opelxpd 5623 . . 3 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌))
18 xpcco2.f . . . . 5 (𝜑𝐹 ∈ (𝑀𝐻𝑃))
19 xpcco2.g . . . . 5 (𝜑𝐺 ∈ (𝑁𝐽𝑄))
2018, 19opelxpd 5623 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
21 xpcco2.h . . . . 5 𝐻 = (Hom ‘𝐶)
22 xpcco2.j . . . . 5 𝐽 = (Hom ‘𝐷)
231, 2, 3, 21, 22, 9, 10, 12, 13, 5xpchom2 17891 . . . 4 (𝜑 → (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2420, 23eleqtrrd 2842 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩))
25 xpcco2.k . . . . 5 (𝜑𝐾 ∈ (𝑃𝐻𝑅))
26 xpcco2.l . . . . 5 (𝜑𝐿 ∈ (𝑄𝐽𝑆))
2725, 26opelxpd 5623 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
281, 2, 3, 21, 22, 12, 13, 15, 16, 5xpchom2 17891 . . . 4 (𝜑 → (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩) = ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
2927, 28eleqtrrd 2842 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩))
301, 4, 5, 6, 7, 8, 11, 14, 17, 24, 29xpcco 17888 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩)
31 op1stg 7833 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
329, 10, 31syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
33 op1stg 7833 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3412, 13, 33syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3532, 34opeq12d 4813 . . . . 5 (𝜑 → ⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑀, 𝑃⟩)
36 op1stg 7833 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3715, 16, 36syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3835, 37oveq12d 7286 . . . 4 (𝜑 → (⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩)) = (⟨𝑀, 𝑃· 𝑅))
39 op1stg 7833 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4025, 26, 39syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
41 op1stg 7833 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4218, 19, 41syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4338, 40, 42oveq123d 7289 . . 3 (𝜑 → ((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)) = (𝐾(⟨𝑀, 𝑃· 𝑅)𝐹))
44 op2ndg 7834 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
459, 10, 44syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
46 op2ndg 7834 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4712, 13, 46syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4845, 47opeq12d 4813 . . . . 5 (𝜑 → ⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑁, 𝑄⟩)
49 op2ndg 7834 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5015, 16, 49syl2anc 584 . . . . 5 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5148, 50oveq12d 7286 . . . 4 (𝜑 → (⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩)) = (⟨𝑁, 𝑄 𝑆))
52 op2ndg 7834 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5325, 26, 52syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
54 op2ndg 7834 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5518, 19, 54syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5651, 53, 55oveq123d 7289 . . 3 (𝜑 → ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩)) = (𝐿(⟨𝑁, 𝑄 𝑆)𝐺))
5743, 56opeq12d 4813 . 2 (𝜑 → ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩ = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
5830, 57eqtrd 2778 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cop 4568   × cxp 5583  cfv 6427  (class class class)co 7268  1st c1st 7819  2nd c2nd 7820  Basecbs 16900  Hom chom 16961  compcco 16962   ×c cxpc 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-fz 13228  df-struct 16836  df-slot 16871  df-ndx 16883  df-base 16901  df-hom 16974  df-cco 16975  df-xpc 17877
This theorem is referenced by:  prfcl  17908  evlfcllem  17927  curf1cl  17934  curf2cl  17937  curfcl  17938  uncfcurf  17945  hofcl  17965
  Copyright terms: Public domain W3C validator