MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2 Structured version   Visualization version   GIF version

Theorem xpcco2 18256
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpcco2.o1 · = (comp‘𝐶)
xpcco2.o2 = (comp‘𝐷)
xpcco2.o 𝑂 = (comp‘𝑇)
xpcco2.r (𝜑𝑅𝑋)
xpcco2.s (𝜑𝑆𝑌)
xpcco2.f (𝜑𝐹 ∈ (𝑀𝐻𝑃))
xpcco2.g (𝜑𝐺 ∈ (𝑁𝐽𝑄))
xpcco2.k (𝜑𝐾 ∈ (𝑃𝐻𝑅))
xpcco2.l (𝜑𝐿 ∈ (𝑄𝐽𝑆))
Assertion
Ref Expression
xpcco2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)

Proof of Theorem xpcco2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 18247 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 eqid 2740 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
6 xpcco2.o1 . . 3 · = (comp‘𝐶)
7 xpcco2.o2 . . 3 = (comp‘𝐷)
8 xpcco2.o . . 3 𝑂 = (comp‘𝑇)
9 xpcco2.m . . . 4 (𝜑𝑀𝑋)
10 xpcco2.n . . . 4 (𝜑𝑁𝑌)
119, 10opelxpd 5739 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
12 xpcco2.p . . . 4 (𝜑𝑃𝑋)
13 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1412, 13opelxpd 5739 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
15 xpcco2.r . . . 4 (𝜑𝑅𝑋)
16 xpcco2.s . . . 4 (𝜑𝑆𝑌)
1715, 16opelxpd 5739 . . 3 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌))
18 xpcco2.f . . . . 5 (𝜑𝐹 ∈ (𝑀𝐻𝑃))
19 xpcco2.g . . . . 5 (𝜑𝐺 ∈ (𝑁𝐽𝑄))
2018, 19opelxpd 5739 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
21 xpcco2.h . . . . 5 𝐻 = (Hom ‘𝐶)
22 xpcco2.j . . . . 5 𝐽 = (Hom ‘𝐷)
231, 2, 3, 21, 22, 9, 10, 12, 13, 5xpchom2 18255 . . . 4 (𝜑 → (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2420, 23eleqtrrd 2847 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩))
25 xpcco2.k . . . . 5 (𝜑𝐾 ∈ (𝑃𝐻𝑅))
26 xpcco2.l . . . . 5 (𝜑𝐿 ∈ (𝑄𝐽𝑆))
2725, 26opelxpd 5739 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
281, 2, 3, 21, 22, 12, 13, 15, 16, 5xpchom2 18255 . . . 4 (𝜑 → (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩) = ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
2927, 28eleqtrrd 2847 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩))
301, 4, 5, 6, 7, 8, 11, 14, 17, 24, 29xpcco 18252 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩)
31 op1stg 8042 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
329, 10, 31syl2anc 583 . . . . . 6 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
33 op1stg 8042 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3412, 13, 33syl2anc 583 . . . . . 6 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3532, 34opeq12d 4905 . . . . 5 (𝜑 → ⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑀, 𝑃⟩)
36 op1stg 8042 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3715, 16, 36syl2anc 583 . . . . 5 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3835, 37oveq12d 7466 . . . 4 (𝜑 → (⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩)) = (⟨𝑀, 𝑃· 𝑅))
39 op1stg 8042 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4025, 26, 39syl2anc 583 . . . 4 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
41 op1stg 8042 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4218, 19, 41syl2anc 583 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4338, 40, 42oveq123d 7469 . . 3 (𝜑 → ((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)) = (𝐾(⟨𝑀, 𝑃· 𝑅)𝐹))
44 op2ndg 8043 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
459, 10, 44syl2anc 583 . . . . . 6 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
46 op2ndg 8043 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4712, 13, 46syl2anc 583 . . . . . 6 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4845, 47opeq12d 4905 . . . . 5 (𝜑 → ⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑁, 𝑄⟩)
49 op2ndg 8043 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5015, 16, 49syl2anc 583 . . . . 5 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5148, 50oveq12d 7466 . . . 4 (𝜑 → (⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩)) = (⟨𝑁, 𝑄 𝑆))
52 op2ndg 8043 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5325, 26, 52syl2anc 583 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
54 op2ndg 8043 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5518, 19, 54syl2anc 583 . . . 4 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5651, 53, 55oveq123d 7469 . . 3 (𝜑 → ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩)) = (𝐿(⟨𝑁, 𝑄 𝑆)𝐺))
5743, 56opeq12d 4905 . 2 (𝜑 → ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩ = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
5830, 57eqtrd 2780 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Basecbs 17258  Hom chom 17322  compcco 17323   ×c cxpc 18237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-xpc 18241
This theorem is referenced by:  prfcl  18272  evlfcllem  18291  curf1cl  18298  curf2cl  18301  curfcl  18302  uncfcurf  18309  hofcl  18329
  Copyright terms: Public domain W3C validator