MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2 Structured version   Visualization version   GIF version

Theorem xpcco2 17648
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpcco2.o1 · = (comp‘𝐶)
xpcco2.o2 = (comp‘𝐷)
xpcco2.o 𝑂 = (comp‘𝑇)
xpcco2.r (𝜑𝑅𝑋)
xpcco2.s (𝜑𝑆𝑌)
xpcco2.f (𝜑𝐹 ∈ (𝑀𝐻𝑃))
xpcco2.g (𝜑𝐺 ∈ (𝑁𝐽𝑄))
xpcco2.k (𝜑𝐾 ∈ (𝑃𝐻𝑅))
xpcco2.l (𝜑𝐿 ∈ (𝑄𝐽𝑆))
Assertion
Ref Expression
xpcco2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)

Proof of Theorem xpcco2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 17639 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 eqid 2736 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
6 xpcco2.o1 . . 3 · = (comp‘𝐶)
7 xpcco2.o2 . . 3 = (comp‘𝐷)
8 xpcco2.o . . 3 𝑂 = (comp‘𝑇)
9 xpcco2.m . . . 4 (𝜑𝑀𝑋)
10 xpcco2.n . . . 4 (𝜑𝑁𝑌)
119, 10opelxpd 5574 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
12 xpcco2.p . . . 4 (𝜑𝑃𝑋)
13 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1412, 13opelxpd 5574 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
15 xpcco2.r . . . 4 (𝜑𝑅𝑋)
16 xpcco2.s . . . 4 (𝜑𝑆𝑌)
1715, 16opelxpd 5574 . . 3 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌))
18 xpcco2.f . . . . 5 (𝜑𝐹 ∈ (𝑀𝐻𝑃))
19 xpcco2.g . . . . 5 (𝜑𝐺 ∈ (𝑁𝐽𝑄))
2018, 19opelxpd 5574 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
21 xpcco2.h . . . . 5 𝐻 = (Hom ‘𝐶)
22 xpcco2.j . . . . 5 𝐽 = (Hom ‘𝐷)
231, 2, 3, 21, 22, 9, 10, 12, 13, 5xpchom2 17647 . . . 4 (𝜑 → (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2420, 23eleqtrrd 2834 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩))
25 xpcco2.k . . . . 5 (𝜑𝐾 ∈ (𝑃𝐻𝑅))
26 xpcco2.l . . . . 5 (𝜑𝐿 ∈ (𝑄𝐽𝑆))
2725, 26opelxpd 5574 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
281, 2, 3, 21, 22, 12, 13, 15, 16, 5xpchom2 17647 . . . 4 (𝜑 → (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩) = ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
2927, 28eleqtrrd 2834 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩))
301, 4, 5, 6, 7, 8, 11, 14, 17, 24, 29xpcco 17644 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩)
31 op1stg 7751 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
329, 10, 31syl2anc 587 . . . . . 6 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
33 op1stg 7751 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3412, 13, 33syl2anc 587 . . . . . 6 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3532, 34opeq12d 4778 . . . . 5 (𝜑 → ⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑀, 𝑃⟩)
36 op1stg 7751 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3715, 16, 36syl2anc 587 . . . . 5 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3835, 37oveq12d 7209 . . . 4 (𝜑 → (⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩)) = (⟨𝑀, 𝑃· 𝑅))
39 op1stg 7751 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4025, 26, 39syl2anc 587 . . . 4 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
41 op1stg 7751 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4218, 19, 41syl2anc 587 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4338, 40, 42oveq123d 7212 . . 3 (𝜑 → ((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)) = (𝐾(⟨𝑀, 𝑃· 𝑅)𝐹))
44 op2ndg 7752 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
459, 10, 44syl2anc 587 . . . . . 6 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
46 op2ndg 7752 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4712, 13, 46syl2anc 587 . . . . . 6 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4845, 47opeq12d 4778 . . . . 5 (𝜑 → ⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑁, 𝑄⟩)
49 op2ndg 7752 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5015, 16, 49syl2anc 587 . . . . 5 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5148, 50oveq12d 7209 . . . 4 (𝜑 → (⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩)) = (⟨𝑁, 𝑄 𝑆))
52 op2ndg 7752 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5325, 26, 52syl2anc 587 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
54 op2ndg 7752 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5518, 19, 54syl2anc 587 . . . 4 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5651, 53, 55oveq123d 7212 . . 3 (𝜑 → ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩)) = (𝐿(⟨𝑁, 𝑄 𝑆)𝐺))
5743, 56opeq12d 4778 . 2 (𝜑 → ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩ = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
5830, 57eqtrd 2771 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cop 4533   × cxp 5534  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  Basecbs 16666  Hom chom 16760  compcco 16761   ×c cxpc 17629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-hom 16773  df-cco 16774  df-xpc 17633
This theorem is referenced by:  prfcl  17664  evlfcllem  17683  curf1cl  17690  curf2cl  17693  curfcl  17694  uncfcurf  17701  hofcl  17721
  Copyright terms: Public domain W3C validator