MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco2 Structured version   Visualization version   GIF version

Theorem xpcco2 18095
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpcco2.o1 · = (comp‘𝐶)
xpcco2.o2 = (comp‘𝐷)
xpcco2.o 𝑂 = (comp‘𝑇)
xpcco2.r (𝜑𝑅𝑋)
xpcco2.s (𝜑𝑆𝑌)
xpcco2.f (𝜑𝐹 ∈ (𝑀𝐻𝑃))
xpcco2.g (𝜑𝐺 ∈ (𝑁𝐽𝑄))
xpcco2.k (𝜑𝐾 ∈ (𝑃𝐻𝑅))
xpcco2.l (𝜑𝐿 ∈ (𝑄𝐽𝑆))
Assertion
Ref Expression
xpcco2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)

Proof of Theorem xpcco2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 18086 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 eqid 2733 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
6 xpcco2.o1 . . 3 · = (comp‘𝐶)
7 xpcco2.o2 . . 3 = (comp‘𝐷)
8 xpcco2.o . . 3 𝑂 = (comp‘𝑇)
9 xpcco2.m . . . 4 (𝜑𝑀𝑋)
10 xpcco2.n . . . 4 (𝜑𝑁𝑌)
119, 10opelxpd 5658 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
12 xpcco2.p . . . 4 (𝜑𝑃𝑋)
13 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1412, 13opelxpd 5658 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
15 xpcco2.r . . . 4 (𝜑𝑅𝑋)
16 xpcco2.s . . . 4 (𝜑𝑆𝑌)
1715, 16opelxpd 5658 . . 3 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌))
18 xpcco2.f . . . . 5 (𝜑𝐹 ∈ (𝑀𝐻𝑃))
19 xpcco2.g . . . . 5 (𝜑𝐺 ∈ (𝑁𝐽𝑄))
2018, 19opelxpd 5658 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
21 xpcco2.h . . . . 5 𝐻 = (Hom ‘𝐶)
22 xpcco2.j . . . . 5 𝐽 = (Hom ‘𝐷)
231, 2, 3, 21, 22, 9, 10, 12, 13, 5xpchom2 18094 . . . 4 (𝜑 → (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2420, 23eleqtrrd 2836 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑀, 𝑁⟩(Hom ‘𝑇)⟨𝑃, 𝑄⟩))
25 xpcco2.k . . . . 5 (𝜑𝐾 ∈ (𝑃𝐻𝑅))
26 xpcco2.l . . . . 5 (𝜑𝐿 ∈ (𝑄𝐽𝑆))
2725, 26opelxpd 5658 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
281, 2, 3, 21, 22, 12, 13, 15, 16, 5xpchom2 18094 . . . 4 (𝜑 → (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩) = ((𝑃𝐻𝑅) × (𝑄𝐽𝑆)))
2927, 28eleqtrrd 2836 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (⟨𝑃, 𝑄⟩(Hom ‘𝑇)⟨𝑅, 𝑆⟩))
301, 4, 5, 6, 7, 8, 11, 14, 17, 24, 29xpcco 18091 . 2 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩)
31 op1stg 7939 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
329, 10, 31syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
33 op1stg 7939 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3412, 13, 33syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
3532, 34opeq12d 4832 . . . . 5 (𝜑 → ⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑀, 𝑃⟩)
36 op1stg 7939 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3715, 16, 36syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
3835, 37oveq12d 7370 . . . 4 (𝜑 → (⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩)) = (⟨𝑀, 𝑃· 𝑅))
39 op1stg 7939 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4025, 26, 39syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
41 op1stg 7939 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4218, 19, 41syl2anc 584 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
4338, 40, 42oveq123d 7373 . . 3 (𝜑 → ((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)) = (𝐾(⟨𝑀, 𝑃· 𝑅)𝐹))
44 op2ndg 7940 . . . . . . 7 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
459, 10, 44syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
46 op2ndg 7940 . . . . . . 7 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4712, 13, 46syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
4845, 47opeq12d 4832 . . . . 5 (𝜑 → ⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ = ⟨𝑁, 𝑄⟩)
49 op2ndg 7940 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5015, 16, 49syl2anc 584 . . . . 5 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
5148, 50oveq12d 7370 . . . 4 (𝜑 → (⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩)) = (⟨𝑁, 𝑄 𝑆))
52 op2ndg 7940 . . . . 5 ((𝐾 ∈ (𝑃𝐻𝑅) ∧ 𝐿 ∈ (𝑄𝐽𝑆)) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5325, 26, 52syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
54 op2ndg 7940 . . . . 5 ((𝐹 ∈ (𝑀𝐻𝑃) ∧ 𝐺 ∈ (𝑁𝐽𝑄)) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5518, 19, 54syl2anc 584 . . . 4 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
5651, 53, 55oveq123d 7373 . . 3 (𝜑 → ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩)) = (𝐿(⟨𝑁, 𝑄 𝑆)𝐺))
5743, 56opeq12d 4832 . 2 (𝜑 → ⟨((1st ‘⟨𝐾, 𝐿⟩)(⟨(1st ‘⟨𝑀, 𝑁⟩), (1st ‘⟨𝑃, 𝑄⟩)⟩ · (1st ‘⟨𝑅, 𝑆⟩))(1st ‘⟨𝐹, 𝐺⟩)), ((2nd ‘⟨𝐾, 𝐿⟩)(⟨(2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑃, 𝑄⟩)⟩ (2nd ‘⟨𝑅, 𝑆⟩))(2nd ‘⟨𝐹, 𝐺⟩))⟩ = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
5830, 57eqtrd 2768 1 (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃· 𝑅)𝐹), (𝐿(⟨𝑁, 𝑄 𝑆)𝐺)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4581   × cxp 5617  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  Hom chom 17174  compcco 17175   ×c cxpc 18076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-xpc 18080
This theorem is referenced by:  prfcl  18111  evlfcllem  18129  curf1cl  18136  curf2cl  18139  curfcl  18140  uncfcurf  18147  hofcl  18167  xpcfucco2  49381
  Copyright terms: Public domain W3C validator