Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrtos | Structured version Visualization version GIF version |
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
opsrso.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrso.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
opsrso.r | ⊢ (𝜑 → 𝑅 ∈ Toset) |
opsrso.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
opsrso.w | ⊢ (𝜑 → 𝑇 We 𝐼) |
Ref | Expression |
---|---|
opsrtos | ⊢ (𝜑 → 𝑂 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrso.o | . 2 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
2 | opsrso.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | opsrso.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Toset) | |
4 | opsrso.t | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
5 | opsrso.w | . 2 ⊢ (𝜑 → 𝑇 We 𝐼) | |
6 | eqid 2739 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
7 | eqid 2739 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
8 | eqid 2739 | . 2 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
9 | eqid 2739 | . 2 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
10 | eqid 2739 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
11 | biid 264 | . 2 ⊢ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) | |
12 | eqid 2739 | . 2 ⊢ (le‘𝑂) = (le‘𝑂) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | opsrtoslem2 21148 | 1 ⊢ (𝜑 → 𝑂 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ∃wrex 3065 {crab 3068 ⊆ wss 3884 class class class wbr 5070 We wwe 5533 × cxp 5577 ◡ccnv 5578 “ cima 5582 ‘cfv 6415 (class class class)co 7252 ↑m cmap 8550 Fincfn 8668 ℕcn 11878 ℕ0cn0 12138 Basecbs 16815 lecple 16870 ltcplt 17916 Tosetctos 18024 mPwSer cmps 20992 <bag cltb 20995 ordPwSer copws 20996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-inf2 9304 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-seqom 8226 df-1o 8244 df-2o 8245 df-oadd 8248 df-omul 8249 df-oexp 8250 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-oi 9174 df-cnf 9325 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-xnn0 12211 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-hash 13948 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-tset 16882 df-ple 16883 df-proset 17903 df-poset 17921 df-plt 17938 df-toset 18025 df-psr 20997 df-ltbag 21000 df-opsr 21001 |
This theorem is referenced by: opsrso 21150 psr1tos 21245 |
Copyright terms: Public domain | W3C validator |