| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrtos | Structured version Visualization version GIF version | ||
| Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| opsrso.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| opsrso.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| opsrso.r | ⊢ (𝜑 → 𝑅 ∈ Toset) |
| opsrso.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| opsrso.w | ⊢ (𝜑 → 𝑇 We 𝐼) |
| Ref | Expression |
|---|---|
| opsrtos | ⊢ (𝜑 → 𝑂 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | . 2 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
| 2 | opsrso.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | opsrso.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Toset) | |
| 4 | opsrso.t | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
| 5 | opsrso.w | . 2 ⊢ (𝜑 → 𝑇 We 𝐼) | |
| 6 | eqid 2731 | . 2 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 7 | eqid 2731 | . 2 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 8 | eqid 2731 | . 2 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
| 9 | eqid 2731 | . 2 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
| 10 | eqid 2731 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 11 | biid 261 | . 2 ⊢ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) | |
| 12 | eqid 2731 | . 2 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | opsrtoslem2 21997 | 1 ⊢ (𝜑 → 𝑂 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 class class class wbr 5093 We wwe 5571 × cxp 5617 ◡ccnv 5618 “ cima 5622 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 ℕcn 12131 ℕ0cn0 12387 Basecbs 17126 lecple 17174 ltcplt 18220 Tosetctos 18326 mPwSer cmps 21847 <bag cltb 21850 ordPwSer copws 21851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seqom 8373 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-oexp 8397 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-oi 9402 df-cnf 9558 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-tset 17186 df-ple 17187 df-proset 18206 df-poset 18225 df-plt 18240 df-toset 18327 df-psr 21852 df-ltbag 21855 df-opsr 21856 |
| This theorem is referenced by: opsrso 21999 psr1tos 22107 |
| Copyright terms: Public domain | W3C validator |