| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for pmtrdifwrdel2 19365. (Contributed by AV, 31-Jan-2019.) |
| Ref | Expression |
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
| pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
| Ref | Expression |
|---|---|
| pmtrdifwrdel2lem1 | ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊))) | |
| 2 | fvex 6835 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V | |
| 3 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
| 4 | 3 | difeq1d 4076 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) |
| 5 | 4 | dmeqd 5848 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) |
| 6 | 5 | fveq2d 6826 | . . . . . 6 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
| 7 | pmtrdifwrdel.0 | . . . . . 6 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
| 8 | 6, 7 | fvmptg 6928 | . . . . 5 ⊢ ((𝑖 ∈ (0..^(♯‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
| 9 | 1, 2, 8 | sylancl 586 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
| 10 | 9 | fveq1d 6824 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾)) |
| 11 | wrdsymbcl 14434 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
| 12 | 11 | adantlr 715 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) |
| 13 | simplr 768 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝐾 ∈ 𝑁) | |
| 14 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 15 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
| 16 | eqid 2729 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
| 17 | 14, 15, 16 | pmtrdifellem4 19358 | . . . 4 ⊢ (((𝑊‘𝑖) ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
| 18 | 12, 13, 17 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
| 19 | 10, 18 | eqtrd 2764 | . 2 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = 𝐾) |
| 20 | 19 | ralrimiva 3121 | 1 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 {csn 4577 ↦ cmpt 5173 I cid 5513 dom cdm 5619 ran crn 5620 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ..^cfzo 13557 ♯chash 14237 Word cword 14420 pmTrspcpmtr 19320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-efmnd 18743 df-symg 19249 df-pmtr 19321 |
| This theorem is referenced by: pmtrdifwrdel2 19365 |
| Copyright terms: Public domain | W3C validator |