MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel2lem1 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel2lem1 19470
Description: Lemma 1 for pmtrdifwrdel2 19472. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdel2lem1 ((𝑊 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖   𝑖,𝑊,𝑥   𝑖,𝐾   𝑖,𝑁
Allowed substitution hints:   𝑅(𝑖)   𝑈(𝑥,𝑖)   𝐾(𝑥)

Proof of Theorem pmtrdifwrdel2lem1
StepHypRef Expression
1 simpr 484 . . . . 5 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
2 fvex 6899 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V
3 fveq2 6886 . . . . . . . . 9 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
43difeq1d 4105 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
54dmeqd 5896 . . . . . . 7 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
65fveq2d 6890 . . . . . 6 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
7 pmtrdifwrdel.0 . . . . . 6 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
86, 7fvmptg 6994 . . . . 5 ((𝑖 ∈ (0..^(♯‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
91, 2, 8sylancl 586 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
109fveq1d 6888 . . 3 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾))
11 wrdsymbcl 14547 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
1211adantlr 715 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
13 simplr 768 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝐾𝑁)
14 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
15 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
16 eqid 2734 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
1714, 15, 16pmtrdifellem4 19465 . . . 4 (((𝑊𝑖) ∈ 𝑇𝐾𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾) = 𝐾)
1812, 13, 17syl2anc 584 . . 3 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾) = 𝐾)
1910, 18eqtrd 2769 . 2 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝐾) = 𝐾)
2019ralrimiva 3133 1 ((𝑊 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  cdif 3928  {csn 4606  cmpt 5205   I cid 5557  dom cdm 5665  ran crn 5666  cfv 6541  (class class class)co 7413  0cc0 11137  ..^cfzo 13676  chash 14351  Word cword 14534  pmTrspcpmtr 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-tset 17292  df-efmnd 18851  df-symg 19355  df-pmtr 19428
This theorem is referenced by:  pmtrdifwrdel2  19472
  Copyright terms: Public domain W3C validator