MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdel2lem1 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdel2lem1 19351
Description: Lemma 1 for pmtrdifwrdel2 19353. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdel2lem1 ((𝑊 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖   𝑖,𝑊,𝑥   𝑖,𝐾   𝑖,𝑁
Allowed substitution hints:   𝑅(𝑖)   𝑈(𝑥,𝑖)   𝐾(𝑥)

Proof of Theorem pmtrdifwrdel2lem1
StepHypRef Expression
1 simpr 485 . . . . 5 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
2 fvex 6904 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V
3 fveq2 6891 . . . . . . . . 9 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
43difeq1d 4121 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
54dmeqd 5905 . . . . . . 7 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
65fveq2d 6895 . . . . . 6 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
7 pmtrdifwrdel.0 . . . . . 6 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
86, 7fvmptg 6996 . . . . 5 ((𝑖 ∈ (0..^(♯‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
91, 2, 8sylancl 586 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
109fveq1d 6893 . . 3 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾))
11 wrdsymbcl 14476 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
1211adantlr 713 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
13 simplr 767 . . . 4 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝐾𝑁)
14 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
15 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
16 eqid 2732 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
1714, 15, 16pmtrdifellem4 19346 . . . 4 (((𝑊𝑖) ∈ 𝑇𝐾𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾) = 𝐾)
1812, 13, 17syl2anc 584 . . 3 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝐾) = 𝐾)
1910, 18eqtrd 2772 . 2 (((𝑊 ∈ Word 𝑇𝐾𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝐾) = 𝐾)
2019ralrimiva 3146 1 ((𝑊 ∈ Word 𝑇𝐾𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cdif 3945  {csn 4628  cmpt 5231   I cid 5573  dom cdm 5676  ran crn 5677  cfv 6543  (class class class)co 7408  0cc0 11109  ..^cfzo 13626  chash 14289  Word cword 14463  pmTrspcpmtr 19308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-efmnd 18749  df-symg 19234  df-pmtr 19309
This theorem is referenced by:  pmtrdifwrdel2  19353
  Copyright terms: Public domain W3C validator