![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifwrdel2 19353. (Contributed by AV, 31-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
Ref | Expression |
---|---|
pmtrdifwrdel2lem1 | ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊))) | |
2 | fvex 6904 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V | |
3 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
4 | 3 | difeq1d 4121 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) |
5 | 4 | dmeqd 5905 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) |
6 | 5 | fveq2d 6895 | . . . . . 6 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
7 | pmtrdifwrdel.0 | . . . . . 6 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
8 | 6, 7 | fvmptg 6996 | . . . . 5 ⊢ ((𝑖 ∈ (0..^(♯‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
9 | 1, 2, 8 | sylancl 586 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
10 | 9 | fveq1d 6893 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾)) |
11 | wrdsymbcl 14476 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
12 | 11 | adantlr 713 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) |
13 | simplr 767 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝐾 ∈ 𝑁) | |
14 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
15 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
16 | eqid 2732 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
17 | 14, 15, 16 | pmtrdifellem4 19346 | . . . 4 ⊢ (((𝑊‘𝑖) ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
18 | 12, 13, 17 | syl2anc 584 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
19 | 10, 18 | eqtrd 2772 | . 2 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = 𝐾) |
20 | 19 | ralrimiva 3146 | 1 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∖ cdif 3945 {csn 4628 ↦ cmpt 5231 I cid 5573 dom cdm 5676 ran crn 5677 ‘cfv 6543 (class class class)co 7408 0cc0 11109 ..^cfzo 13626 ♯chash 14289 Word cword 14463 pmTrspcpmtr 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-efmnd 18749 df-symg 19234 df-pmtr 19309 |
This theorem is referenced by: pmtrdifwrdel2 19353 |
Copyright terms: Public domain | W3C validator |