Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdel2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for pmtrdifwrdel2 19009. (Contributed by AV, 31-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
Ref | Expression |
---|---|
pmtrdifwrdel2lem1 | ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊))) | |
2 | fvex 6769 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V | |
3 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
4 | 3 | difeq1d 4052 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) |
5 | 4 | dmeqd 5803 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) |
6 | 5 | fveq2d 6760 | . . . . . 6 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
7 | pmtrdifwrdel.0 | . . . . . 6 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
8 | 6, 7 | fvmptg 6855 | . . . . 5 ⊢ ((𝑖 ∈ (0..^(♯‘𝑊)) ∧ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
9 | 1, 2, 8 | sylancl 585 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
10 | 9 | fveq1d 6758 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾)) |
11 | wrdsymbcl 14158 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
12 | 11 | adantlr 711 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) |
13 | simplr 765 | . . . 4 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝐾 ∈ 𝑁) | |
14 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
15 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
16 | eqid 2738 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
17 | 14, 15, 16 | pmtrdifellem4 19002 | . . . 4 ⊢ (((𝑊‘𝑖) ∈ 𝑇 ∧ 𝐾 ∈ 𝑁) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
18 | 12, 13, 17 | syl2anc 583 | . . 3 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝐾) = 𝐾) |
19 | 10, 18 | eqtrd 2778 | . 2 ⊢ (((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝐾) = 𝐾) |
20 | 19 | ralrimiva 3107 | 1 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 I cid 5479 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ..^cfzo 13311 ♯chash 13972 Word cword 14145 pmTrspcpmtr 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 df-pmtr 18965 |
This theorem is referenced by: pmtrdifwrdel2 19009 |
Copyright terms: Public domain | W3C validator |