![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rgspncl | Structured version Visualization version GIF version |
Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
rgspnval.r | β’ (π β π β Ring) |
rgspnval.b | β’ (π β π΅ = (Baseβπ )) |
rgspnval.ss | β’ (π β π΄ β π΅) |
rgspnval.n | β’ (π β π = (RingSpanβπ )) |
rgspnval.sp | β’ (π β π = (πβπ΄)) |
Ref | Expression |
---|---|
rgspncl | β’ (π β π β (SubRingβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgspnval.r | . . 3 β’ (π β π β Ring) | |
2 | rgspnval.b | . . 3 β’ (π β π΅ = (Baseβπ )) | |
3 | rgspnval.ss | . . 3 β’ (π β π΄ β π΅) | |
4 | rgspnval.n | . . 3 β’ (π β π = (RingSpanβπ )) | |
5 | rgspnval.sp | . . 3 β’ (π β π = (πβπ΄)) | |
6 | 1, 2, 3, 4, 5 | rgspnval 42213 | . 2 β’ (π β π = β© {π‘ β (SubRingβπ ) β£ π΄ β π‘}) |
7 | ssrab2 4077 | . . 3 β’ {π‘ β (SubRingβπ ) β£ π΄ β π‘} β (SubRingβπ ) | |
8 | eqid 2731 | . . . . . . . 8 β’ (Baseβπ ) = (Baseβπ ) | |
9 | 8 | subrgid 20464 | . . . . . . 7 β’ (π β Ring β (Baseβπ ) β (SubRingβπ )) |
10 | 1, 9 | syl 17 | . . . . . 6 β’ (π β (Baseβπ ) β (SubRingβπ )) |
11 | 2, 10 | eqeltrd 2832 | . . . . 5 β’ (π β π΅ β (SubRingβπ )) |
12 | sseq2 4008 | . . . . . 6 β’ (π‘ = π΅ β (π΄ β π‘ β π΄ β π΅)) | |
13 | 12 | rspcev 3612 | . . . . 5 β’ ((π΅ β (SubRingβπ ) β§ π΄ β π΅) β βπ‘ β (SubRingβπ )π΄ β π‘) |
14 | 11, 3, 13 | syl2anc 583 | . . . 4 β’ (π β βπ‘ β (SubRingβπ )π΄ β π‘) |
15 | rabn0 4385 | . . . 4 β’ ({π‘ β (SubRingβπ ) β£ π΄ β π‘} β β β βπ‘ β (SubRingβπ )π΄ β π‘) | |
16 | 14, 15 | sylibr 233 | . . 3 β’ (π β {π‘ β (SubRingβπ ) β£ π΄ β π‘} β β ) |
17 | subrgint 20486 | . . 3 β’ (({π‘ β (SubRingβπ ) β£ π΄ β π‘} β (SubRingβπ ) β§ {π‘ β (SubRingβπ ) β£ π΄ β π‘} β β ) β β© {π‘ β (SubRingβπ ) β£ π΄ β π‘} β (SubRingβπ )) | |
18 | 7, 16, 17 | sylancr 586 | . 2 β’ (π β β© {π‘ β (SubRingβπ ) β£ π΄ β π‘} β (SubRingβπ )) |
19 | 6, 18 | eqeltrd 2832 | 1 β’ (π β π β (SubRingβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 {crab 3431 β wss 3948 β c0 4322 β© cint 4950 βcfv 6543 Basecbs 17149 Ringcrg 20128 SubRingcsubrg 20458 RingSpancrgspn 20459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrng 20435 df-subrg 20460 df-rgspn 20461 |
This theorem is referenced by: rngunsnply 42218 |
Copyright terms: Public domain | W3C validator |