| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgspncl | Structured version Visualization version GIF version | ||
| Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| rgspnval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rgspnval.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| rgspnval.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rgspnval.n | ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
| rgspnval.sp | ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) |
| Ref | Expression |
|---|---|
| rgspncl | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgspnval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | rgspnval.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 3 | rgspnval.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | rgspnval.n | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) | |
| 5 | rgspnval.sp | . . 3 ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) | |
| 6 | 1, 2, 3, 4, 5 | rgspnval 20527 | . 2 ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 7 | ssrab2 4027 | . . 3 ⊢ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ⊆ (SubRing‘𝑅) | |
| 8 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8 | subrgid 20488 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 11 | 2, 10 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| 12 | sseq2 3956 | . . . . . 6 ⊢ (𝑡 = 𝐵 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵)) | |
| 13 | 12 | rspcev 3572 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴 ⊆ 𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 14 | 11, 3, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 15 | rabn0 4336 | . . . 4 ⊢ ({𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ≠ ∅ ↔ ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) | |
| 16 | 14, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ≠ ∅) |
| 17 | subrgint 20510 | . . 3 ⊢ (({𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ⊆ (SubRing‘𝑅) ∧ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ≠ ∅) → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ (SubRing‘𝑅)) | |
| 18 | 7, 16, 17 | sylancr 587 | . 2 ⊢ (𝜑 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ (SubRing‘𝑅)) |
| 19 | 6, 18 | eqeltrd 2831 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4280 ∩ cint 4895 ‘cfv 6481 Basecbs 17120 Ringcrg 20151 SubRingcsubrg 20484 RingSpancrgspn 20525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-subrng 20461 df-subrg 20485 df-rgspn 20526 |
| This theorem is referenced by: elrgspn 33213 elrgspnsubrun 33216 fldextrspunlem1 33688 fldextrspunfld 33689 fldextrspunlem2 33690 rngunsnply 43261 |
| Copyright terms: Public domain | W3C validator |