Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmneg1 | Structured version Visualization version GIF version |
Description: Negation of a product in a ring. (mulneg1 11504 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
ringneglmul.t | ⊢ · = (.r‘𝑅) |
ringneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
ringneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ringmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringgrp 19875 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
4 | ringneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | 4, 5 | ringidcl 19894 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
8 | ringneglmul.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
9 | 4, 8 | grpinvcl 18715 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
10 | 3, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
11 | ringneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | ringneglmul.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | ringneglmul.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | 4, 13 | ringass 19890 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ ((𝑁‘(1r‘𝑅)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌))) |
15 | 1, 10, 11, 12, 14 | syl13anc 1371 | . 2 ⊢ (𝜑 → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌))) |
16 | 4, 13, 5, 8, 1, 11 | ringnegl 19920 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝑅)) · 𝑋) = (𝑁‘𝑋)) |
17 | 16 | oveq1d 7344 | . 2 ⊢ (𝜑 → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘𝑋) · 𝑌)) |
18 | 4, 13 | ringcl 19887 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
19 | 1, 11, 12, 18 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
20 | 4, 13, 5, 8, 1, 19 | ringnegl 19920 | . 2 ⊢ (𝜑 → ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
21 | 15, 17, 20 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 .rcmulr 17052 Grpcgrp 18665 invgcminusg 18666 1rcur 19824 Ringcrg 19870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-minusg 18669 df-mgp 19808 df-ur 19825 df-ring 19872 |
This theorem is referenced by: ringm2neg 19924 rngsubdir 19926 mulgass2 19927 cntzsubr 20154 mdetunilem7 21865 |
Copyright terms: Public domain | W3C validator |