MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmneg2 Structured version   Visualization version   GIF version

Theorem ringmneg2 20263
Description: Negation of a product in a ring. (mulneg2 11672 analog.) Compared with rngmneg2 20126, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg2
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringneglmul.x . . 3 (𝜑𝑋𝐵)
3 ringneglmul.y . . 3 (𝜑𝑌𝐵)
4 ringgrp 20196 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
6 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2735 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 20223 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
91, 8syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
10 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
116, 10grpinvcl 18968 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
125, 9, 11syl2anc 584 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
146, 13ringass 20211 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
151, 2, 3, 12, 14syl13anc 1374 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
166, 13ringcl 20208 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
171, 2, 3, 16syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
186, 13, 7, 10, 1, 17ringnegr 20261 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑁‘(𝑋 · 𝑌)))
196, 13, 7, 10, 1, 3ringnegr 20261 . . 3 (𝜑 → (𝑌 · (𝑁‘(1r𝑅))) = (𝑁𝑌))
2019oveq2d 7419 . 2 (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))) = (𝑋 · (𝑁𝑌)))
2115, 18, 203eqtr3rd 2779 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Basecbs 17226  .rcmulr 17270  Grpcgrp 18914  invgcminusg 18915  1rcur 20139  Ringcrg 20191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193
This theorem is referenced by:  cntzsubr  20564  abvneg  20784  erler  33206  zrhcntr  33956  lflnegcl  39039
  Copyright terms: Public domain W3C validator