| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringmneg2 | Structured version Visualization version GIF version | ||
| Description: Negation of a product in a ring. (mulneg2 11672 analog.) Compared with rngmneg2 20126, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringneglmul.t | ⊢ · = (.r‘𝑅) |
| ringneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringneglmul.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringgrp 20196 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 6 | ringneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2735 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 20223 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 10 | ringneglmul.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 11 | 6, 10 | grpinvcl 18968 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 12 | 5, 9, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 13 | ringneglmul.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 6, 13 | ringass 20211 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) |
| 15 | 1, 2, 3, 12, 14 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅))))) |
| 16 | 6, 13 | ringcl 20208 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 1, 2, 3, 16 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 6, 13, 7, 10, 1, 17 | ringnegr 20261 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r‘𝑅))) = (𝑁‘(𝑋 · 𝑌))) |
| 19 | 6, 13, 7, 10, 1, 3 | ringnegr 20261 | . . 3 ⊢ (𝜑 → (𝑌 · (𝑁‘(1r‘𝑅))) = (𝑁‘𝑌)) |
| 20 | 19 | oveq2d 7419 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r‘𝑅)))) = (𝑋 · (𝑁‘𝑌))) |
| 21 | 15, 18, 20 | 3eqtr3rd 2779 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 .rcmulr 17270 Grpcgrp 18914 invgcminusg 18915 1rcur 20139 Ringcrg 20191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 |
| This theorem is referenced by: cntzsubr 20564 abvneg 20784 erler 33206 zrhcntr 33956 lflnegcl 39039 |
| Copyright terms: Public domain | W3C validator |