MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmneg2 Structured version   Visualization version   GIF version

Theorem ringmneg2 18984
Description: Negation of a product in a ring. (mulneg2 10812 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg2
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringneglmul.x . . 3 (𝜑𝑋𝐵)
3 ringneglmul.y . . 3 (𝜑𝑌𝐵)
4 ringgrp 18939 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
6 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2777 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 18955 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
91, 8syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
10 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
116, 10grpinvcl 17854 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
125, 9, 11syl2anc 579 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
146, 13ringass 18951 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
151, 2, 3, 12, 14syl13anc 1440 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
166, 13ringcl 18948 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
171, 2, 3, 16syl3anc 1439 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
186, 13, 7, 10, 1, 17rngnegr 18982 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑁‘(𝑋 · 𝑌)))
196, 13, 7, 10, 1, 3rngnegr 18982 . . 3 (𝜑 → (𝑌 · (𝑁‘(1r𝑅))) = (𝑁𝑌))
2019oveq2d 6938 . 2 (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))) = (𝑋 · (𝑁𝑌)))
2115, 18, 203eqtr3rd 2822 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  Basecbs 16255  .rcmulr 16339  Grpcgrp 17809  invgcminusg 17810  1rcur 18888  Ringcrg 18934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-mgp 18877  df-ur 18889  df-ring 18936
This theorem is referenced by:  ringm2neg  18985  ringsubdi  18986  cntzsubr  19204  abvneg  19226  lflnegcl  35224
  Copyright terms: Public domain W3C validator