MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmneg2 Structured version   Visualization version   GIF version

Theorem ringmneg2 20223
Description: Negation of a product in a ring. (mulneg2 11554 analog.) Compared with rngmneg2 20086, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg2
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringneglmul.x . . 3 (𝜑𝑋𝐵)
3 ringneglmul.y . . 3 (𝜑𝑌𝐵)
4 ringgrp 20156 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
6 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2731 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 20183 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
91, 8syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
10 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
116, 10grpinvcl 18900 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
125, 9, 11syl2anc 584 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
146, 13ringass 20171 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
151, 2, 3, 12, 14syl13anc 1374 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
166, 13ringcl 20168 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
171, 2, 3, 16syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
186, 13, 7, 10, 1, 17ringnegr 20221 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑁‘(𝑋 · 𝑌)))
196, 13, 7, 10, 1, 3ringnegr 20221 . . 3 (𝜑 → (𝑌 · (𝑁‘(1r𝑅))) = (𝑁𝑌))
2019oveq2d 7362 . 2 (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))) = (𝑋 · (𝑁𝑌)))
2115, 18, 203eqtr3rd 2775 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  Grpcgrp 18846  invgcminusg 18847  1rcur 20099  Ringcrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153
This theorem is referenced by:  cntzsubr  20521  abvneg  20741  erler  33232  zrhcntr  33992  lflnegcl  39122
  Copyright terms: Public domain W3C validator