MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmneg2 Structured version   Visualization version   GIF version

Theorem ringmneg2 20270
Description: Negation of a product in a ring. (mulneg2 11688 analog.) Compared with rngmneg2 20137, the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg2
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringneglmul.x . . 3 (𝜑𝑋𝐵)
3 ringneglmul.y . . 3 (𝜑𝑌𝐵)
4 ringgrp 20207 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
6 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2725 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 20231 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
91, 8syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
10 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
116, 10grpinvcl 18968 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
125, 9, 11syl2anc 582 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
146, 13ringass 20222 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
151, 2, 3, 12, 14syl13anc 1369 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))))
166, 13ringcl 20219 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
171, 2, 3, 16syl3anc 1368 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
186, 13, 7, 10, 1, 17ringnegr 20268 . 2 (𝜑 → ((𝑋 · 𝑌) · (𝑁‘(1r𝑅))) = (𝑁‘(𝑋 · 𝑌)))
196, 13, 7, 10, 1, 3ringnegr 20268 . . 3 (𝜑 → (𝑌 · (𝑁‘(1r𝑅))) = (𝑁𝑌))
2019oveq2d 7435 . 2 (𝜑 → (𝑋 · (𝑌 · (𝑁‘(1r𝑅)))) = (𝑋 · (𝑁𝑌)))
2115, 18, 203eqtr3rd 2774 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17199  .rcmulr 17253  Grpcgrp 18914  invgcminusg 18915  1rcur 20150  Ringcrg 20202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-plusg 17265  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204
This theorem is referenced by:  cntzsubr  20574  abvneg  20743  erler  33076  lflnegcl  38697
  Copyright terms: Public domain W3C validator