| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl3 | Structured version Visualization version GIF version | ||
| Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl3 | ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil) | |
| 2 | cphsca.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | cphsca.k | . . . . . . . . . . 11 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | 2, 3 | cphsubrg 25080 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
| 5 | 1, 4 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | cnfldbas 21268 | . . . . . . . . . 10 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 6 | subrgss 20481 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ) |
| 9 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3947 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 11 | 10 | negnegd 11524 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴) |
| 12 | 11 | fveq2d 6862 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴)) |
| 13 | rpre 12960 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ) |
| 15 | rpge0 12965 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴) |
| 17 | 14, 16 | sqrtnegd 15388 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴))) |
| 18 | 12, 17 | eqtr3d 2766 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴))) |
| 19 | simpl2 1193 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾) | |
| 20 | cnfldneg 21307 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
| 21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
| 22 | subrgsubg 20486 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
| 23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld)) |
| 24 | eqid 2729 | . . . . . . . . 9 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 25 | 24 | subginvcl 19067 | . . . . . . . 8 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 26 | 23, 9, 25 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 27 | 21, 26 | eqeltrrd 2829 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ 𝐾) |
| 28 | 2, 3 | cphsqrtcl 25084 | . . . . . 6 ⊢ ((𝑊 ∈ ℂPreHil ∧ (-𝐴 ∈ 𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾) |
| 29 | 1, 27, 14, 16, 28 | syl13anc 1374 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾) |
| 30 | cnfldmul 21272 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20493 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 32 | 5, 19, 29, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 33 | 18, 32 | eqeltrd 2828 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 34 | 33 | ex 412 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 35 | 2, 3 | cphsqrtcl2 25086 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 36 | 35 | 3expia 1121 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 37 | 36 | 3adant2 1131 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 38 | 34, 37 | pm2.61d 179 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 ici 11070 · cmul 11073 ≤ cle 11209 -cneg 11406 ℝ+crp 12951 √csqrt 15199 Basecbs 17179 Scalarcsca 17223 invgcminusg 18866 SubGrpcsubg 19052 SubRingcsubrg 20478 ℂfldccnfld 21264 ℂPreHilccph 25066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-staf 20748 df-srng 20749 df-lvec 21010 df-cnfld 21265 df-phl 21535 df-cph 25068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |