| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl3 | Structured version Visualization version GIF version | ||
| Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl3 | ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1191 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil) | |
| 2 | cphsca.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | cphsca.k | . . . . . . . . . . 11 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | 2, 3 | cphsubrg 25215 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
| 5 | 1, 4 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | cnfldbas 21369 | . . . . . . . . . 10 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 6 | subrgss 20573 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ) |
| 9 | simpl3 1193 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3983 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 11 | 10 | negnegd 11612 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴) |
| 12 | 11 | fveq2d 6909 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴)) |
| 13 | rpre 13044 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ) |
| 15 | rpge0 13049 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴) |
| 17 | 14, 16 | sqrtnegd 15461 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴))) |
| 18 | 12, 17 | eqtr3d 2778 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴))) |
| 19 | simpl2 1192 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾) | |
| 20 | cnfldneg 21409 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
| 21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
| 22 | subrgsubg 20578 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
| 23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld)) |
| 24 | eqid 2736 | . . . . . . . . 9 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 25 | 24 | subginvcl 19154 | . . . . . . . 8 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 26 | 23, 9, 25 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 27 | 21, 26 | eqeltrrd 2841 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ 𝐾) |
| 28 | 2, 3 | cphsqrtcl 25219 | . . . . . 6 ⊢ ((𝑊 ∈ ℂPreHil ∧ (-𝐴 ∈ 𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾) |
| 29 | 1, 27, 14, 16, 28 | syl13anc 1373 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾) |
| 30 | cnfldmul 21373 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20585 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 32 | 5, 19, 29, 31 | syl3anc 1372 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 33 | 18, 32 | eqeltrd 2840 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 34 | 33 | ex 412 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 35 | 2, 3 | cphsqrtcl2 25221 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 36 | 35 | 3expia 1121 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 37 | 36 | 3adant2 1131 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 38 | 34, 37 | pm2.61d 179 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 ici 11158 · cmul 11161 ≤ cle 11297 -cneg 11494 ℝ+crp 13035 √csqrt 15273 Basecbs 17248 Scalarcsca 17301 invgcminusg 18953 SubGrpcsubg 19139 SubRingcsubrg 20570 ℂfldccnfld 21365 ℂPreHilccph 25201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-rp 13036 df-ico 13394 df-fz 13549 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-grp 18955 df-minusg 18956 df-subg 19142 df-ghm 19232 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-drng 20732 df-staf 20841 df-srng 20842 df-lvec 21103 df-cnfld 21366 df-phl 21645 df-cph 25203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |