Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphsqrtcl3 | Structured version Visualization version GIF version |
Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsqrtcl3 | ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil) | |
2 | cphsca.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | cphsca.k | . . . . . . . . . . 11 ⊢ 𝐾 = (Base‘𝐹) | |
4 | 2, 3 | cphsubrg 24249 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
5 | 1, 4 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld)) |
6 | cnfldbas 20514 | . . . . . . . . . 10 ⊢ ℂ = (Base‘ℂfld) | |
7 | 6 | subrgss 19940 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ) |
9 | simpl3 1191 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ 𝐾) | |
10 | 8, 9 | sseldd 3918 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ) |
11 | 10 | negnegd 11253 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴) |
12 | 11 | fveq2d 6760 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴)) |
13 | rpre 12667 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ) |
15 | rpge0 12672 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴) |
17 | 14, 16 | sqrtnegd 15061 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴))) |
18 | 12, 17 | eqtr3d 2780 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴))) |
19 | simpl2 1190 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾) | |
20 | cnfldneg 20536 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
22 | subrgsubg 19945 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld)) |
24 | eqid 2738 | . . . . . . . . 9 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
25 | 24 | subginvcl 18679 | . . . . . . . 8 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
26 | 23, 9, 25 | syl2anc 583 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
27 | 21, 26 | eqeltrrd 2840 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ 𝐾) |
28 | 2, 3 | cphsqrtcl 24253 | . . . . . 6 ⊢ ((𝑊 ∈ ℂPreHil ∧ (-𝐴 ∈ 𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾) |
29 | 1, 27, 14, 16, 28 | syl13anc 1370 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾) |
30 | cnfldmul 20516 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
31 | 30 | subrgmcl 19951 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾) |
32 | 5, 19, 29, 31 | syl3anc 1369 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾) |
33 | 18, 32 | eqeltrd 2839 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
34 | 33 | ex 412 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
35 | 2, 3 | cphsqrtcl2 24255 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
36 | 35 | 3expia 1119 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
37 | 36 | 3adant2 1129 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
38 | 34, 37 | pm2.61d 179 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 ici 10804 · cmul 10807 ≤ cle 10941 -cneg 11136 ℝ+crp 12659 √csqrt 14872 Basecbs 16840 Scalarcsca 16891 invgcminusg 18493 SubGrpcsubg 18664 SubRingcsubrg 19935 ℂfldccnfld 20510 ℂPreHilccph 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-subg 18667 df-ghm 18747 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-staf 20020 df-srng 20021 df-lvec 20280 df-cnfld 20511 df-phl 20743 df-cph 24237 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |