| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl3 | Structured version Visualization version GIF version | ||
| Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl3 | ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil) | |
| 2 | cphsca.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | cphsca.k | . . . . . . . . . . 11 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | 2, 3 | cphsubrg 25127 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
| 5 | 1, 4 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | cnfldbas 21304 | . . . . . . . . . 10 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 6 | subrgss 20496 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ) |
| 9 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3931 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 11 | 10 | negnegd 11474 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴) |
| 12 | 11 | fveq2d 6835 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴)) |
| 13 | rpre 12905 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ) |
| 15 | rpge0 12910 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴) |
| 17 | 14, 16 | sqrtnegd 15336 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴))) |
| 18 | 12, 17 | eqtr3d 2770 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴))) |
| 19 | simpl2 1193 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾) | |
| 20 | cnfldneg 21341 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
| 21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
| 22 | subrgsubg 20501 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
| 23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld)) |
| 24 | eqid 2733 | . . . . . . . . 9 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 25 | 24 | subginvcl 19056 | . . . . . . . 8 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 26 | 23, 9, 25 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
| 27 | 21, 26 | eqeltrrd 2834 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ 𝐾) |
| 28 | 2, 3 | cphsqrtcl 25131 | . . . . . 6 ⊢ ((𝑊 ∈ ℂPreHil ∧ (-𝐴 ∈ 𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾) |
| 29 | 1, 27, 14, 16, 28 | syl13anc 1374 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾) |
| 30 | cnfldmul 21308 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 31 | 30 | subrgmcl 20508 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 32 | 5, 19, 29, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾) |
| 33 | 18, 32 | eqeltrd 2833 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 34 | 33 | ex 412 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 35 | 2, 3 | cphsqrtcl2 25133 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
| 36 | 35 | 3expia 1121 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 37 | 36 | 3adant2 1131 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
| 38 | 34, 37 | pm2.61d 179 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 ici 11019 · cmul 11022 ≤ cle 11158 -cneg 11356 ℝ+crp 12896 √csqrt 15147 Basecbs 17127 Scalarcsca 17171 invgcminusg 18855 SubGrpcsubg 19041 SubRingcsubrg 20493 ℂfldccnfld 21300 ℂPreHilccph 25113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-grp 18857 df-minusg 18858 df-subg 19044 df-ghm 19133 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-drng 20655 df-staf 20763 df-srng 20764 df-lvec 21046 df-cnfld 21301 df-phl 21572 df-cph 25115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |