![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsqrtcl3 | Structured version Visualization version GIF version |
Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit i, then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsqrtcl3 | ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil) | |
2 | cphsca.f | . . . . . . . . . . 11 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | cphsca.k | . . . . . . . . . . 11 ⊢ 𝐾 = (Base‘𝐹) | |
4 | 2, 3 | cphsubrg 25169 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
5 | 1, 4 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld)) |
6 | cnfldbas 21317 | . . . . . . . . . 10 ⊢ ℂ = (Base‘ℂfld) | |
7 | 6 | subrgss 20540 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ) |
9 | simpl3 1190 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ 𝐾) | |
10 | 8, 9 | sseldd 3977 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ) |
11 | 10 | negnegd 11599 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴) |
12 | 11 | fveq2d 6900 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴)) |
13 | rpre 13022 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
14 | 13 | adantl 480 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ) |
15 | rpge0 13027 | . . . . . . 7 ⊢ (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴) | |
16 | 15 | adantl 480 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴) |
17 | 14, 16 | sqrtnegd 15412 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴))) |
18 | 12, 17 | eqtr3d 2767 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴))) |
19 | simpl2 1189 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾) | |
20 | cnfldneg 21357 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
22 | subrgsubg 20545 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld)) |
24 | eqid 2725 | . . . . . . . . 9 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
25 | 24 | subginvcl 19115 | . . . . . . . 8 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
26 | 23, 9, 25 | syl2anc 582 | . . . . . . 7 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾) |
27 | 21, 26 | eqeltrrd 2826 | . . . . . 6 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ 𝐾) |
28 | 2, 3 | cphsqrtcl 25173 | . . . . . 6 ⊢ ((𝑊 ∈ ℂPreHil ∧ (-𝐴 ∈ 𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾) |
29 | 1, 27, 14, 16, 28 | syl13anc 1369 | . . . . 5 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾) |
30 | cnfldmul 21321 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
31 | 30 | subrgmcl 20552 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾) |
32 | 5, 19, 29, 31 | syl3anc 1368 | . . . 4 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾) |
33 | 18, 32 | eqeltrd 2825 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
34 | 33 | ex 411 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
35 | 2, 3 | cphsqrtcl2 25175 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) |
36 | 35 | 3expia 1118 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
37 | 36 | 3adant2 1128 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾)) |
38 | 34, 37 | pm2.61d 179 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 ℝcr 11144 0cc0 11145 ici 11147 · cmul 11150 ≤ cle 11286 -cneg 11482 ℝ+crp 13014 √csqrt 15224 Basecbs 17199 Scalarcsca 17255 invgcminusg 18915 SubGrpcsubg 19100 SubRingcsubrg 20535 ℂfldccnfld 21313 ℂPreHilccph 25155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 ax-mulf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-ico 13370 df-fz 13525 df-seq 14008 df-exp 14068 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-0g 17442 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-mhm 18759 df-grp 18917 df-minusg 18918 df-subg 19103 df-ghm 19193 df-cmn 19766 df-abl 19767 df-mgp 20104 df-rng 20122 df-ur 20151 df-ring 20204 df-cring 20205 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-subrng 20512 df-subrg 20537 df-drng 20655 df-staf 20754 df-srng 20755 df-lvec 21017 df-cnfld 21314 df-phl 21592 df-cph 25157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |