| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12939 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7353 1c1 11029 / cdiv 11795 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-rp 12912 |
| This theorem is referenced by: rprecred 12966 resqrex 15175 rlimno1 15579 supcvg 15781 harmonic 15784 expcnv 15789 eirrlem 16131 prmreclem5 16850 prmreclem6 16851 met1stc 24425 met2ndci 24426 nmoi2 24634 bcthlem5 25244 ovolsca 25432 vitali 25530 ismbf3d 25571 itg2seq 25659 itg2mulclem 25663 itg2mulc 25664 aalioulem3 26258 aaliou3lem8 26269 dvradcnv 26346 tanregt0 26464 divlogrlim 26560 advlogexp 26580 logtayllem 26584 divcxp 26612 cxpcn3lem 26673 loglesqrt 26687 logbrec 26708 ang180lem2 26736 asinlem3 26797 leibpi 26868 rlimcnp 26891 rlimcnp2 26892 efrlim 26895 efrlimOLD 26896 cxplim 26898 cxp2lim 26903 divsqrtsumlem 26906 amgmlem 26916 emcllem2 26923 emcllem4 26925 emcllem5 26926 emcllem6 26927 fsumharmonic 26938 lgamgulmlem5 26959 lgambdd 26963 basellem3 27009 basellem6 27012 logfaclbnd 27149 bclbnd 27207 rplogsumlem2 27412 rpvmasumlem 27414 dchrisum0lem2a 27444 log2sumbnd 27471 logdivbnd 27483 pntlemo 27534 nrt2irr 30435 smcnlem 30659 minvecolem3 30838 minvecolem4 30842 esumdivc 34052 dya2ub 34240 omssubadd 34270 logdivsqrle 34620 iprodgam 35717 faclimlem1 35718 faclimlem3 35720 faclim 35721 iprodfac 35722 poimirlem29 37631 poimirlem30 37632 heiborlem3 37795 heiborlem6 37798 heiborlem8 37800 heibor 37803 irrapxlem4 42801 irrapxlem5 42802 oddfl 45263 xralrple4 45356 xrralrecnnge 45373 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 stoweid 46048 wallispi 46055 stirlinglem1 46059 stirlinglem6 46064 stirlinglem10 46068 stirlinglem11 46069 dirkertrigeqlem3 46085 dirkercncflem2 46089 iinhoiicc 46659 iunhoiioo 46661 vonioolem2 46666 vonicclem1 46668 eenglngeehlnmlem2 48727 amgmlemALT 49792 young2d 49794 |
| Copyright terms: Public domain | W3C validator |