| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12913 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7341 1c1 11002 / cdiv 11769 ℝ+crp 12885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-rp 12886 |
| This theorem is referenced by: rprecred 12940 resqrex 15152 rlimno1 15556 supcvg 15758 harmonic 15761 expcnv 15766 eirrlem 16108 prmreclem5 16827 prmreclem6 16828 met1stc 24431 met2ndci 24432 nmoi2 24640 bcthlem5 25250 ovolsca 25438 vitali 25536 ismbf3d 25577 itg2seq 25665 itg2mulclem 25669 itg2mulc 25670 aalioulem3 26264 aaliou3lem8 26275 dvradcnv 26352 tanregt0 26470 divlogrlim 26566 advlogexp 26586 logtayllem 26590 divcxp 26618 cxpcn3lem 26679 loglesqrt 26693 logbrec 26714 ang180lem2 26742 asinlem3 26803 leibpi 26874 rlimcnp 26897 rlimcnp2 26898 efrlim 26901 efrlimOLD 26902 cxplim 26904 cxp2lim 26909 divsqrtsumlem 26912 amgmlem 26922 emcllem2 26929 emcllem4 26931 emcllem5 26932 emcllem6 26933 fsumharmonic 26944 lgamgulmlem5 26965 lgambdd 26969 basellem3 27015 basellem6 27018 logfaclbnd 27155 bclbnd 27213 rplogsumlem2 27418 rpvmasumlem 27420 dchrisum0lem2a 27450 log2sumbnd 27477 logdivbnd 27489 pntlemo 27540 nrt2irr 30445 smcnlem 30669 minvecolem3 30848 minvecolem4 30852 esumdivc 34088 dya2ub 34275 omssubadd 34305 logdivsqrle 34655 iprodgam 35778 faclimlem1 35779 faclimlem3 35781 faclim 35782 iprodfac 35783 poimirlem29 37689 poimirlem30 37690 heiborlem3 37853 heiborlem6 37856 heiborlem8 37858 heibor 37861 irrapxlem4 42858 irrapxlem5 42859 oddfl 45319 xralrple4 45411 xrralrecnnge 45428 ioodvbdlimc1lem2 45970 ioodvbdlimc2lem 45972 stoweid 46101 wallispi 46108 stirlinglem1 46112 stirlinglem6 46117 stirlinglem10 46121 stirlinglem11 46122 dirkertrigeqlem3 46138 dirkercncflem2 46142 iinhoiicc 46712 iunhoiioo 46714 vonioolem2 46719 vonicclem1 46721 eenglngeehlnmlem2 48770 amgmlemALT 49835 young2d 49837 |
| Copyright terms: Public domain | W3C validator |