![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpreccl 13018 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 (class class class)co 7414 1c1 11125 / cdiv 11887 ℝ+crp 12992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-rp 12993 |
This theorem is referenced by: rprecred 13045 resqrex 15215 rlimno1 15618 supcvg 15820 harmonic 15823 expcnv 15828 eirrlem 16166 prmreclem5 16874 prmreclem6 16875 met1stc 24404 met2ndci 24405 nmoi2 24621 bcthlem5 25230 ovolsca 25418 vitali 25516 ismbf3d 25557 itg2seq 25646 itg2mulclem 25650 itg2mulc 25651 aalioulem3 26243 aaliou3lem8 26254 dvradcnv 26331 tanregt0 26447 divlogrlim 26543 advlogexp 26563 logtayllem 26567 divcxp 26595 cxpcn3lem 26656 loglesqrt 26667 logbrec 26688 ang180lem2 26716 asinlem3 26777 leibpi 26848 rlimcnp 26871 rlimcnp2 26872 efrlim 26875 efrlimOLD 26876 cxplim 26878 cxp2lim 26883 divsqrtsumlem 26886 amgmlem 26896 emcllem2 26903 emcllem4 26905 emcllem5 26906 emcllem6 26907 fsumharmonic 26918 lgamgulmlem5 26939 lgambdd 26943 basellem3 26989 basellem6 26992 logfaclbnd 27129 bclbnd 27187 rplogsumlem2 27392 rpvmasumlem 27394 dchrisum0lem2a 27424 log2sumbnd 27451 logdivbnd 27463 pntlemo 27514 nrt2irr 30257 smcnlem 30481 minvecolem3 30660 minvecolem4 30664 esumdivc 33625 dya2ub 33813 omssubadd 33843 logdivsqrle 34205 iprodgam 35259 faclimlem1 35260 faclimlem3 35262 faclim 35263 iprodfac 35264 poimirlem29 37044 poimirlem30 37045 heiborlem3 37208 heiborlem6 37211 heiborlem8 37213 heibor 37216 irrapxlem4 42157 irrapxlem5 42158 oddfl 44572 xralrple4 44668 xrralrecnnge 44685 ioodvbdlimc1lem2 45233 ioodvbdlimc2lem 45235 stoweid 45364 wallispi 45371 stirlinglem1 45375 stirlinglem6 45380 stirlinglem10 45384 stirlinglem11 45385 dirkertrigeqlem3 45401 dirkercncflem2 45405 iinhoiicc 45975 iunhoiioo 45977 vonioolem2 45982 vonicclem1 45984 eenglngeehlnmlem2 47724 amgmlemALT 48149 young2d 48151 |
Copyright terms: Public domain | W3C validator |