| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 13033 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7403 1c1 11128 / cdiv 11892 ℝ+crp 13006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-rp 13007 |
| This theorem is referenced by: rprecred 13060 resqrex 15267 rlimno1 15668 supcvg 15870 harmonic 15873 expcnv 15878 eirrlem 16220 prmreclem5 16938 prmreclem6 16939 met1stc 24458 met2ndci 24459 nmoi2 24667 bcthlem5 25278 ovolsca 25466 vitali 25564 ismbf3d 25605 itg2seq 25693 itg2mulclem 25697 itg2mulc 25698 aalioulem3 26292 aaliou3lem8 26303 dvradcnv 26380 tanregt0 26498 divlogrlim 26594 advlogexp 26614 logtayllem 26618 divcxp 26646 cxpcn3lem 26707 loglesqrt 26721 logbrec 26742 ang180lem2 26770 asinlem3 26831 leibpi 26902 rlimcnp 26925 rlimcnp2 26926 efrlim 26929 efrlimOLD 26930 cxplim 26932 cxp2lim 26937 divsqrtsumlem 26940 amgmlem 26950 emcllem2 26957 emcllem4 26959 emcllem5 26960 emcllem6 26961 fsumharmonic 26972 lgamgulmlem5 26993 lgambdd 26997 basellem3 27043 basellem6 27046 logfaclbnd 27183 bclbnd 27241 rplogsumlem2 27446 rpvmasumlem 27448 dchrisum0lem2a 27478 log2sumbnd 27505 logdivbnd 27517 pntlemo 27568 nrt2irr 30400 smcnlem 30624 minvecolem3 30803 minvecolem4 30807 esumdivc 34060 dya2ub 34248 omssubadd 34278 logdivsqrle 34628 iprodgam 35705 faclimlem1 35706 faclimlem3 35708 faclim 35709 iprodfac 35710 poimirlem29 37619 poimirlem30 37620 heiborlem3 37783 heiborlem6 37786 heiborlem8 37788 heibor 37791 irrapxlem4 42795 irrapxlem5 42796 oddfl 45254 xralrple4 45348 xrralrecnnge 45365 ioodvbdlimc1lem2 45909 ioodvbdlimc2lem 45911 stoweid 46040 wallispi 46047 stirlinglem1 46051 stirlinglem6 46056 stirlinglem10 46060 stirlinglem11 46061 dirkertrigeqlem3 46077 dirkercncflem2 46081 iinhoiicc 46651 iunhoiioo 46653 vonioolem2 46658 vonicclem1 46660 eenglngeehlnmlem2 48666 amgmlemALT 49615 young2d 49617 |
| Copyright terms: Public domain | W3C validator |