| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12979 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 1c1 11069 / cdiv 11835 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-rp 12952 |
| This theorem is referenced by: rprecred 13006 resqrex 15216 rlimno1 15620 supcvg 15822 harmonic 15825 expcnv 15830 eirrlem 16172 prmreclem5 16891 prmreclem6 16892 met1stc 24409 met2ndci 24410 nmoi2 24618 bcthlem5 25228 ovolsca 25416 vitali 25514 ismbf3d 25555 itg2seq 25643 itg2mulclem 25647 itg2mulc 25648 aalioulem3 26242 aaliou3lem8 26253 dvradcnv 26330 tanregt0 26448 divlogrlim 26544 advlogexp 26564 logtayllem 26568 divcxp 26596 cxpcn3lem 26657 loglesqrt 26671 logbrec 26692 ang180lem2 26720 asinlem3 26781 leibpi 26852 rlimcnp 26875 rlimcnp2 26876 efrlim 26879 efrlimOLD 26880 cxplim 26882 cxp2lim 26887 divsqrtsumlem 26890 amgmlem 26900 emcllem2 26907 emcllem4 26909 emcllem5 26910 emcllem6 26911 fsumharmonic 26922 lgamgulmlem5 26943 lgambdd 26947 basellem3 26993 basellem6 26996 logfaclbnd 27133 bclbnd 27191 rplogsumlem2 27396 rpvmasumlem 27398 dchrisum0lem2a 27428 log2sumbnd 27455 logdivbnd 27467 pntlemo 27518 nrt2irr 30402 smcnlem 30626 minvecolem3 30805 minvecolem4 30809 esumdivc 34073 dya2ub 34261 omssubadd 34291 logdivsqrle 34641 iprodgam 35729 faclimlem1 35730 faclimlem3 35732 faclim 35733 iprodfac 35734 poimirlem29 37643 poimirlem30 37644 heiborlem3 37807 heiborlem6 37810 heiborlem8 37812 heibor 37815 irrapxlem4 42813 irrapxlem5 42814 oddfl 45276 xralrple4 45369 xrralrecnnge 45386 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 stoweid 46061 wallispi 46068 stirlinglem1 46072 stirlinglem6 46077 stirlinglem10 46081 stirlinglem11 46082 dirkertrigeqlem3 46098 dirkercncflem2 46102 iinhoiicc 46672 iunhoiioo 46674 vonioolem2 46679 vonicclem1 46681 eenglngeehlnmlem2 48727 amgmlemALT 49792 young2d 49794 |
| Copyright terms: Public domain | W3C validator |