| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12924 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 1c1 11018 / cdiv 11785 ℝ+crp 12896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-rp 12897 |
| This theorem is referenced by: rprecred 12951 resqrex 15164 rlimno1 15568 supcvg 15770 harmonic 15773 expcnv 15778 eirrlem 16120 prmreclem5 16839 prmreclem6 16840 met1stc 24456 met2ndci 24457 nmoi2 24665 bcthlem5 25275 ovolsca 25463 vitali 25561 ismbf3d 25602 itg2seq 25690 itg2mulclem 25694 itg2mulc 25695 aalioulem3 26289 aaliou3lem8 26300 dvradcnv 26377 tanregt0 26495 divlogrlim 26591 advlogexp 26611 logtayllem 26615 divcxp 26643 cxpcn3lem 26704 loglesqrt 26718 logbrec 26739 ang180lem2 26767 asinlem3 26828 leibpi 26899 rlimcnp 26922 rlimcnp2 26923 efrlim 26926 efrlimOLD 26927 cxplim 26929 cxp2lim 26934 divsqrtsumlem 26937 amgmlem 26947 emcllem2 26954 emcllem4 26956 emcllem5 26957 emcllem6 26958 fsumharmonic 26969 lgamgulmlem5 26990 lgambdd 26994 basellem3 27040 basellem6 27043 logfaclbnd 27180 bclbnd 27238 rplogsumlem2 27443 rpvmasumlem 27445 dchrisum0lem2a 27475 log2sumbnd 27502 logdivbnd 27514 pntlemo 27565 nrt2irr 30474 smcnlem 30698 minvecolem3 30877 minvecolem4 30881 esumdivc 34168 dya2ub 34355 omssubadd 34385 logdivsqrle 34735 iprodgam 35858 faclimlem1 35859 faclimlem3 35861 faclim 35862 iprodfac 35863 poimirlem29 37762 poimirlem30 37763 heiborlem3 37926 heiborlem6 37929 heiborlem8 37931 heibor 37934 irrapxlem4 42982 irrapxlem5 42983 oddfl 45442 xralrple4 45533 xrralrecnnge 45550 ioodvbdlimc1lem2 46092 ioodvbdlimc2lem 46094 stoweid 46223 wallispi 46230 stirlinglem1 46234 stirlinglem6 46239 stirlinglem10 46243 stirlinglem11 46244 dirkertrigeqlem3 46260 dirkercncflem2 46264 iinhoiicc 46834 iunhoiioo 46836 vonioolem2 46841 vonicclem1 46843 eenglngeehlnmlem2 48900 amgmlemALT 49964 young2d 49966 |
| Copyright terms: Public domain | W3C validator |