| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12986 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 1c1 11076 / cdiv 11842 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-rp 12959 |
| This theorem is referenced by: rprecred 13013 resqrex 15223 rlimno1 15627 supcvg 15829 harmonic 15832 expcnv 15837 eirrlem 16179 prmreclem5 16898 prmreclem6 16899 met1stc 24416 met2ndci 24417 nmoi2 24625 bcthlem5 25235 ovolsca 25423 vitali 25521 ismbf3d 25562 itg2seq 25650 itg2mulclem 25654 itg2mulc 25655 aalioulem3 26249 aaliou3lem8 26260 dvradcnv 26337 tanregt0 26455 divlogrlim 26551 advlogexp 26571 logtayllem 26575 divcxp 26603 cxpcn3lem 26664 loglesqrt 26678 logbrec 26699 ang180lem2 26727 asinlem3 26788 leibpi 26859 rlimcnp 26882 rlimcnp2 26883 efrlim 26886 efrlimOLD 26887 cxplim 26889 cxp2lim 26894 divsqrtsumlem 26897 amgmlem 26907 emcllem2 26914 emcllem4 26916 emcllem5 26917 emcllem6 26918 fsumharmonic 26929 lgamgulmlem5 26950 lgambdd 26954 basellem3 27000 basellem6 27003 logfaclbnd 27140 bclbnd 27198 rplogsumlem2 27403 rpvmasumlem 27405 dchrisum0lem2a 27435 log2sumbnd 27462 logdivbnd 27474 pntlemo 27525 nrt2irr 30409 smcnlem 30633 minvecolem3 30812 minvecolem4 30816 esumdivc 34080 dya2ub 34268 omssubadd 34298 logdivsqrle 34648 iprodgam 35736 faclimlem1 35737 faclimlem3 35739 faclim 35740 iprodfac 35741 poimirlem29 37650 poimirlem30 37651 heiborlem3 37814 heiborlem6 37817 heiborlem8 37819 heibor 37822 irrapxlem4 42820 irrapxlem5 42821 oddfl 45283 xralrple4 45376 xrralrecnnge 45393 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 stoweid 46068 wallispi 46075 stirlinglem1 46079 stirlinglem6 46084 stirlinglem10 46088 stirlinglem11 46089 dirkertrigeqlem3 46105 dirkercncflem2 46109 iinhoiicc 46679 iunhoiioo 46681 vonioolem2 46686 vonicclem1 46688 eenglngeehlnmlem2 48731 amgmlemALT 49796 young2d 49798 |
| Copyright terms: Public domain | W3C validator |