| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpreccl 12955 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 1c1 11045 / cdiv 11811 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-rp 12928 |
| This theorem is referenced by: rprecred 12982 resqrex 15192 rlimno1 15596 supcvg 15798 harmonic 15801 expcnv 15806 eirrlem 16148 prmreclem5 16867 prmreclem6 16868 met1stc 24385 met2ndci 24386 nmoi2 24594 bcthlem5 25204 ovolsca 25392 vitali 25490 ismbf3d 25531 itg2seq 25619 itg2mulclem 25623 itg2mulc 25624 aalioulem3 26218 aaliou3lem8 26229 dvradcnv 26306 tanregt0 26424 divlogrlim 26520 advlogexp 26540 logtayllem 26544 divcxp 26572 cxpcn3lem 26633 loglesqrt 26647 logbrec 26668 ang180lem2 26696 asinlem3 26757 leibpi 26828 rlimcnp 26851 rlimcnp2 26852 efrlim 26855 efrlimOLD 26856 cxplim 26858 cxp2lim 26863 divsqrtsumlem 26866 amgmlem 26876 emcllem2 26883 emcllem4 26885 emcllem5 26886 emcllem6 26887 fsumharmonic 26898 lgamgulmlem5 26919 lgambdd 26923 basellem3 26969 basellem6 26972 logfaclbnd 27109 bclbnd 27167 rplogsumlem2 27372 rpvmasumlem 27374 dchrisum0lem2a 27404 log2sumbnd 27431 logdivbnd 27443 pntlemo 27494 nrt2irr 30375 smcnlem 30599 minvecolem3 30778 minvecolem4 30782 esumdivc 34046 dya2ub 34234 omssubadd 34264 logdivsqrle 34614 iprodgam 35702 faclimlem1 35703 faclimlem3 35705 faclim 35706 iprodfac 35707 poimirlem29 37616 poimirlem30 37617 heiborlem3 37780 heiborlem6 37783 heiborlem8 37785 heibor 37788 irrapxlem4 42786 irrapxlem5 42787 oddfl 45249 xralrple4 45342 xrralrecnnge 45359 ioodvbdlimc1lem2 45903 ioodvbdlimc2lem 45905 stoweid 46034 wallispi 46041 stirlinglem1 46045 stirlinglem6 46050 stirlinglem10 46054 stirlinglem11 46055 dirkertrigeqlem3 46071 dirkercncflem2 46075 iinhoiicc 46645 iunhoiioo 46647 vonioolem2 46652 vonicclem1 46654 eenglngeehlnmlem2 48700 amgmlemALT 49765 young2d 49767 |
| Copyright terms: Public domain | W3C validator |