![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpreccl 13058 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7430 1c1 11153 / cdiv 11917 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-rp 13032 |
This theorem is referenced by: rprecred 13085 resqrex 15285 rlimno1 15686 supcvg 15888 harmonic 15891 expcnv 15896 eirrlem 16236 prmreclem5 16953 prmreclem6 16954 met1stc 24549 met2ndci 24550 nmoi2 24766 bcthlem5 25375 ovolsca 25563 vitali 25661 ismbf3d 25702 itg2seq 25791 itg2mulclem 25795 itg2mulc 25796 aalioulem3 26390 aaliou3lem8 26401 dvradcnv 26478 tanregt0 26595 divlogrlim 26691 advlogexp 26711 logtayllem 26715 divcxp 26743 cxpcn3lem 26804 loglesqrt 26818 logbrec 26839 ang180lem2 26867 asinlem3 26928 leibpi 26999 rlimcnp 27022 rlimcnp2 27023 efrlim 27026 efrlimOLD 27027 cxplim 27029 cxp2lim 27034 divsqrtsumlem 27037 amgmlem 27047 emcllem2 27054 emcllem4 27056 emcllem5 27057 emcllem6 27058 fsumharmonic 27069 lgamgulmlem5 27090 lgambdd 27094 basellem3 27140 basellem6 27143 logfaclbnd 27280 bclbnd 27338 rplogsumlem2 27543 rpvmasumlem 27545 dchrisum0lem2a 27575 log2sumbnd 27602 logdivbnd 27614 pntlemo 27665 nrt2irr 30501 smcnlem 30725 minvecolem3 30904 minvecolem4 30908 esumdivc 34063 dya2ub 34251 omssubadd 34281 logdivsqrle 34643 iprodgam 35721 faclimlem1 35722 faclimlem3 35724 faclim 35725 iprodfac 35726 poimirlem29 37635 poimirlem30 37636 heiborlem3 37799 heiborlem6 37802 heiborlem8 37804 heibor 37807 irrapxlem4 42812 irrapxlem5 42813 oddfl 45227 xralrple4 45322 xrralrecnnge 45339 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 stoweid 46018 wallispi 46025 stirlinglem1 46029 stirlinglem6 46034 stirlinglem10 46038 stirlinglem11 46039 dirkertrigeqlem3 46055 dirkercncflem2 46059 iinhoiicc 46629 iunhoiioo 46631 vonioolem2 46636 vonicclem1 46638 eenglngeehlnmlem2 48587 amgmlemALT 49033 young2d 49035 |
Copyright terms: Public domain | W3C validator |