Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpreccl 12685 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 1c1 10803 / cdiv 11562 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-rp 12660 |
This theorem is referenced by: rprecred 12712 resqrex 14890 rlimno1 15293 supcvg 15496 harmonic 15499 expcnv 15504 eirrlem 15841 prmreclem5 16549 prmreclem6 16550 met1stc 23583 met2ndci 23584 nmoi2 23800 bcthlem5 24397 ovolsca 24584 vitali 24682 ismbf3d 24723 itg2seq 24812 itg2mulclem 24816 itg2mulc 24817 aalioulem3 25399 aaliou3lem8 25410 dvradcnv 25485 tanregt0 25600 divlogrlim 25695 advlogexp 25715 logtayllem 25719 divcxp 25747 cxpcn3lem 25805 loglesqrt 25816 logbrec 25837 ang180lem2 25865 asinlem3 25926 leibpi 25997 rlimcnp 26020 rlimcnp2 26021 efrlim 26024 cxplim 26026 cxp2lim 26031 divsqrtsumlem 26034 amgmlem 26044 emcllem2 26051 emcllem4 26053 emcllem5 26054 emcllem6 26055 fsumharmonic 26066 lgamgulmlem5 26087 lgambdd 26091 basellem3 26137 basellem6 26140 logfaclbnd 26275 bclbnd 26333 rplogsumlem2 26538 rpvmasumlem 26540 dchrisum0lem2a 26570 log2sumbnd 26597 logdivbnd 26609 pntlemo 26660 smcnlem 28960 minvecolem3 29139 minvecolem4 29143 esumdivc 31951 dya2ub 32137 omssubadd 32167 logdivsqrle 32530 iprodgam 33614 faclimlem1 33615 faclimlem3 33617 faclim 33618 iprodfac 33619 poimirlem29 35733 poimirlem30 35734 heiborlem3 35898 heiborlem6 35901 heiborlem8 35903 heibor 35906 irrapxlem4 40563 irrapxlem5 40564 oddfl 42705 xralrple4 42802 xrralrecnnge 42820 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stoweid 43494 wallispi 43501 stirlinglem1 43505 stirlinglem6 43510 stirlinglem10 43514 stirlinglem11 43515 dirkertrigeqlem3 43531 dirkercncflem2 43535 iinhoiicc 44102 iunhoiioo 44104 vonioolem2 44109 vonicclem1 44111 eenglngeehlnmlem2 45972 amgmlemALT 46393 young2d 46395 |
Copyright terms: Public domain | W3C validator |