Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpreccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpreccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpreccl 12756 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 1c1 10872 / cdiv 11632 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-rp 12731 |
This theorem is referenced by: rprecred 12783 resqrex 14962 rlimno1 15365 supcvg 15568 harmonic 15571 expcnv 15576 eirrlem 15913 prmreclem5 16621 prmreclem6 16622 met1stc 23677 met2ndci 23678 nmoi2 23894 bcthlem5 24492 ovolsca 24679 vitali 24777 ismbf3d 24818 itg2seq 24907 itg2mulclem 24911 itg2mulc 24912 aalioulem3 25494 aaliou3lem8 25505 dvradcnv 25580 tanregt0 25695 divlogrlim 25790 advlogexp 25810 logtayllem 25814 divcxp 25842 cxpcn3lem 25900 loglesqrt 25911 logbrec 25932 ang180lem2 25960 asinlem3 26021 leibpi 26092 rlimcnp 26115 rlimcnp2 26116 efrlim 26119 cxplim 26121 cxp2lim 26126 divsqrtsumlem 26129 amgmlem 26139 emcllem2 26146 emcllem4 26148 emcllem5 26149 emcllem6 26150 fsumharmonic 26161 lgamgulmlem5 26182 lgambdd 26186 basellem3 26232 basellem6 26235 logfaclbnd 26370 bclbnd 26428 rplogsumlem2 26633 rpvmasumlem 26635 dchrisum0lem2a 26665 log2sumbnd 26692 logdivbnd 26704 pntlemo 26755 smcnlem 29059 minvecolem3 29238 minvecolem4 29242 esumdivc 32051 dya2ub 32237 omssubadd 32267 logdivsqrle 32630 iprodgam 33708 faclimlem1 33709 faclimlem3 33711 faclim 33712 iprodfac 33713 poimirlem29 35806 poimirlem30 35807 heiborlem3 35971 heiborlem6 35974 heiborlem8 35976 heibor 35979 irrapxlem4 40647 irrapxlem5 40648 oddfl 42816 xralrple4 42912 xrralrecnnge 42930 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 stoweid 43604 wallispi 43611 stirlinglem1 43615 stirlinglem6 43620 stirlinglem10 43624 stirlinglem11 43625 dirkertrigeqlem3 43641 dirkercncflem2 43645 iinhoiicc 44212 iunhoiioo 44214 vonioolem2 44219 vonicclem1 44221 eenglngeehlnmlem2 46084 amgmlemALT 46507 young2d 46509 |
Copyright terms: Public domain | W3C validator |