| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setchom | Structured version Visualization version GIF version | ||
| Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| setchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| setchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑌 ↑m 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | . . 3 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 2 | setcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | setchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | setchomfval 17990 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))) |
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 6 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 7 | 5, 6 | oveq12d 7372 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) |
| 8 | setchom.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 9 | setchom.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 10 | ovexd 7389 | . 2 ⊢ (𝜑 → (𝑌 ↑m 𝑋) ∈ V) | |
| 11 | 4, 7, 8, 9, 10 | ovmpod 7506 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑌 ↑m 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Hom chom 17176 SetCatcsetc 17986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-hom 17189 df-cco 17190 df-setc 17987 |
| This theorem is referenced by: elsetchom 17992 resssetc 18003 funcestrcsetclem8 18057 funcsetcestrclem8 18072 funcsetcestrclem9 18073 fthsetcestrc 18075 fullsetcestrc 18076 funcringcsetcALTV2lem8 48424 funcringcsetclem8ALTV 48447 |
| Copyright terms: Public domain | W3C validator |