| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setchom | Structured version Visualization version GIF version | ||
| Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| setchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| setchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑌 ↑m 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | . . 3 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 2 | setcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | setchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | setchomfval 17986 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))) |
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 6 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 7 | 5, 6 | oveq12d 7364 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) |
| 8 | setchom.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 9 | setchom.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 10 | ovexd 7381 | . 2 ⊢ (𝜑 → (𝑌 ↑m 𝑋) ∈ V) | |
| 11 | 4, 7, 8, 9, 10 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑌 ↑m 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Hom chom 17172 SetCatcsetc 17982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-setc 17983 |
| This theorem is referenced by: elsetchom 17988 resssetc 17999 funcestrcsetclem8 18053 funcsetcestrclem8 18068 funcsetcestrclem9 18069 fthsetcestrc 18071 fullsetcestrc 18072 funcringcsetcALTV2lem8 48334 funcringcsetclem8ALTV 48357 |
| Copyright terms: Public domain | W3C validator |