![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrlem5 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14447. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
sqrlem5.3 | ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} |
Ref | Expression |
---|---|
sqrlem5 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrlem1.1 | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
2 | 1 | ssrab3 3984 | . . . . . 6 ⊢ 𝑆 ⊆ ℝ+ |
3 | 2 | sseli 3891 | . . . . 5 ⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ+) |
4 | 3 | rpge0d 12289 | . . . 4 ⊢ (𝑣 ∈ 𝑆 → 0 ≤ 𝑣) |
5 | 4 | rgen 3117 | . . 3 ⊢ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣 |
6 | sqrlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
7 | 1, 6 | sqrlem3 14442 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) |
8 | sqrlem5.3 | . . . 4 ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} | |
9 | pm4.24 564 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ↔ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣)) | |
10 | 9 | 3anbi1i 1150 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) ↔ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣))) |
11 | 8, 10 | supmullem2 11466 | . . 3 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
12 | 5, 7, 7, 11 | mp3an2i 1458 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
13 | 1, 6 | sqrlem4 14443 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
14 | rpre 12251 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1) → 𝐵 ∈ ℝ) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
17 | 16 | recnd 10522 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℂ) |
18 | 17 | sqvald 13361 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵)) |
19 | 6, 6 | oveq12i 7035 | . . . 4 ⊢ (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) |
20 | 8, 10 | supmul 11467 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
21 | 5, 7, 7, 20 | mp3an2i 1458 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
22 | 19, 21 | syl5eq 2845 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < )) |
23 | 18, 22 | eqtrd 2833 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < )) |
24 | 12, 23 | jca 512 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 {cab 2777 ≠ wne 2986 ∀wral 3107 ∃wrex 3108 {crab 3111 ⊆ wss 3865 ∅c0 4217 class class class wbr 4968 (class class class)co 7023 supcsup 8757 ℝcr 10389 0cc0 10390 1c1 10391 · cmul 10395 < clt 10528 ≤ cle 10529 2c2 11546 ℝ+crp 12243 ↑cexp 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-seq 13224 df-exp 13284 |
This theorem is referenced by: sqrlem6 14445 |
Copyright terms: Public domain | W3C validator |