MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem5 Structured version   Visualization version   GIF version

Theorem sqrlem5 14608
Description: Lemma for 01sqrex 14611. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑣,𝑦   𝑣,𝐵,𝑦   𝑢,𝑇,𝑣
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑥,𝑢,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . . . . 7 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
21ssrab3 4059 . . . . . 6 𝑆 ⊆ ℝ+
32sseli 3965 . . . . 5 (𝑣𝑆𝑣 ∈ ℝ+)
43rpge0d 12438 . . . 4 (𝑣𝑆 → 0 ≤ 𝑣)
54rgen 3150 . . 3 𝑣𝑆 0 ≤ 𝑣
6 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
71, 6sqrlem3 14606 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣))
8 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
9 pm4.24 566 . . . . 5 (∀𝑣𝑆 0 ≤ 𝑣 ↔ (∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣))
1093anbi1i 1153 . . . 4 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) ↔ ((∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)))
118, 10supmullem2 11614 . . 3 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
125, 7, 7, 11mp3an2i 1462 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
131, 6sqrlem4 14607 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
14 rpre 12400 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1514adantr 483 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
1613, 15syl 17 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1716recnd 10671 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℂ)
1817sqvald 13510 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵))
196, 6oveq12i 7170 . . . 4 (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < ))
208, 10supmul 11615 . . . . 5 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
215, 7, 7, 20mp3an2i 1462 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
2219, 21syl5eq 2870 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < ))
2318, 22eqtrd 2858 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
2412, 23jca 514 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  wss 3938  c0 4293   class class class wbr 5068  (class class class)co 7158  supcsup 8906  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  2c2 11695  +crp 12392  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433
This theorem is referenced by:  sqrlem6  14609
  Copyright terms: Public domain W3C validator