MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem5 Structured version   Visualization version   GIF version

Theorem sqrlem5 14325
Description: Lemma for 01sqrex 14328. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑣,𝑦   𝑣,𝐵,𝑦   𝑢,𝑇,𝑣
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑥,𝑢,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . . . . . 8 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 ssrab2 3882 . . . . . . . 8 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ+
31, 2eqsstri 3830 . . . . . . 7 𝑆 ⊆ ℝ+
43sseli 3793 . . . . . 6 (𝑣𝑆𝑣 ∈ ℝ+)
54rpge0d 12118 . . . . 5 (𝑣𝑆 → 0 ≤ 𝑣)
65rgen 3102 . . . 4 𝑣𝑆 0 ≤ 𝑣
76a1i 11 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑣𝑆 0 ≤ 𝑣)
8 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
91, 8sqrlem3 14323 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣))
10 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
11 pm4.24 560 . . . . 5 (∀𝑣𝑆 0 ≤ 𝑣 ↔ (∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣))
12113anbi1i 1197 . . . 4 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) ↔ ((∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)))
1310, 12supmullem2 11285 . . 3 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
147, 9, 9, 13syl3anc 1491 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
151, 8sqrlem4 14324 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
16 rpre 12079 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1716adantr 473 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
1815, 17syl 17 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1918recnd 10356 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℂ)
2019sqvald 13256 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵))
218, 8oveq12i 6889 . . . 4 (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < ))
2210, 12supmul 11286 . . . . 5 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
237, 9, 9, 22syl3anc 1491 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
2421, 23syl5eq 2844 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < ))
2520, 24eqtrd 2832 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
2614, 25jca 508 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  {cab 2784  wne 2970  wral 3088  wrex 3089  {crab 3092  wss 3768  c0 4114   class class class wbr 4842  (class class class)co 6877  supcsup 8587  cr 10222  0cc0 10223  1c1 10224   · cmul 10228   < clt 10362  cle 10363  2c2 11365  +crp 12071  cexp 13111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-sup 8589  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-n0 11578  df-z 11664  df-uz 11928  df-rp 12072  df-seq 13053  df-exp 13112
This theorem is referenced by:  sqrlem6  14326
  Copyright terms: Public domain W3C validator