MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Structured version   Visualization version   GIF version

Theorem sqrlem6 14887
Description: Lemma for 01sqrex 14889. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem5 14886 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
54simprd 495 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
6 vex 3426 . . . . . 6 𝑣 ∈ V
7 eqeq1 2742 . . . . . . 7 (𝑦 = 𝑣 → (𝑦 = (𝑎 · 𝑏) ↔ 𝑣 = (𝑎 · 𝑏)))
872rexbidv 3228 . . . . . 6 (𝑦 = 𝑣 → (∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏) ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏)))
96, 8, 3elab2 3606 . . . . 5 (𝑣𝑇 ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏))
10 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
1110breq1d 5080 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑎↑2) ≤ 𝐴))
1211, 1elrab2 3620 . . . . . . . . . . . . . 14 (𝑎𝑆 ↔ (𝑎 ∈ ℝ+ ∧ (𝑎↑2) ≤ 𝐴))
1312simplbi 497 . . . . . . . . . . . . 13 (𝑎𝑆𝑎 ∈ ℝ+)
14 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑥↑2) = (𝑏↑2))
1514breq1d 5080 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑏↑2) ≤ 𝐴))
1615, 1elrab2 3620 . . . . . . . . . . . . . 14 (𝑏𝑆 ↔ (𝑏 ∈ ℝ+ ∧ (𝑏↑2) ≤ 𝐴))
1716simplbi 497 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 ∈ ℝ+)
18 rpre 12667 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
1918adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
20 rpre 12667 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
2120adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
22 rpgt0 12671 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+ → 0 < 𝑏)
2322adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑏)
24 lemul1 11757 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2519, 21, 21, 23, 24syl112anc 1372 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2613, 17, 25syl2an 595 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2717rpcnd 12703 . . . . . . . . . . . . . . 15 (𝑏𝑆𝑏 ∈ ℂ)
2827sqvald 13789 . . . . . . . . . . . . . 14 (𝑏𝑆 → (𝑏↑2) = (𝑏 · 𝑏))
2928breq2d 5082 . . . . . . . . . . . . 13 (𝑏𝑆 → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3029adantl 481 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3126, 30bitr4d 281 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3231adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3316simprbi 496 . . . . . . . . . . . 12 (𝑏𝑆 → (𝑏↑2) ≤ 𝐴)
3433ad2antll 725 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ≤ 𝐴)
3513rpred 12701 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 ∈ ℝ)
3617rpred 12701 . . . . . . . . . . . . . 14 (𝑏𝑆𝑏 ∈ ℝ)
37 remulcl 10887 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
3835, 36, 37syl2an 595 . . . . . . . . . . . . 13 ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ∈ ℝ)
3938adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ∈ ℝ)
4036resqcld 13893 . . . . . . . . . . . . 13 (𝑏𝑆 → (𝑏↑2) ∈ ℝ)
4140ad2antll 725 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ∈ ℝ)
42 rpre 12667 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4342ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → 𝐴 ∈ ℝ)
44 letr 10999 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑏↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4539, 41, 43, 44syl3anc 1369 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4634, 45mpan2d 690 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑏↑2) → (𝑎 · 𝑏) ≤ 𝐴))
4732, 46sylbid 239 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 → (𝑎 · 𝑏) ≤ 𝐴))
48 rpgt0 12671 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+ → 0 < 𝑎)
4948adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑎)
50 lemul2 11758 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5121, 19, 19, 49, 50syl112anc 1372 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5213, 17, 51syl2an 595 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5313rpcnd 12703 . . . . . . . . . . . . . . 15 (𝑎𝑆𝑎 ∈ ℂ)
5453sqvald 13789 . . . . . . . . . . . . . 14 (𝑎𝑆 → (𝑎↑2) = (𝑎 · 𝑎))
5554breq2d 5082 . . . . . . . . . . . . 13 (𝑎𝑆 → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5655adantr 480 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5752, 56bitr4d 281 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5857adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5912simprbi 496 . . . . . . . . . . . 12 (𝑎𝑆 → (𝑎↑2) ≤ 𝐴)
6059ad2antrl 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ≤ 𝐴)
6135resqcld 13893 . . . . . . . . . . . . 13 (𝑎𝑆 → (𝑎↑2) ∈ ℝ)
6261ad2antrl 724 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ∈ ℝ)
63 letr 10999 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑎↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6439, 62, 43, 63syl3anc 1369 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6560, 64mpan2d 690 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑎↑2) → (𝑎 · 𝑏) ≤ 𝐴))
6658, 65sylbid 239 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 → (𝑎 · 𝑏) ≤ 𝐴))
671, 2sqrlem3 14884 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣𝑆 𝑣𝑦))
6867simp1d 1140 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝑆 ⊆ ℝ)
6968sseld 3916 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑎𝑆𝑎 ∈ ℝ))
7068sseld 3916 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑏𝑆𝑏 ∈ ℝ))
7169, 70anim12d 608 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
7271imp 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
73 letric 11005 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏𝑏𝑎))
7472, 73syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏𝑏𝑎))
7547, 66, 74mpjaod 856 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ≤ 𝐴)
7675ex 412 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ≤ 𝐴))
77 breq1 5073 . . . . . . . 8 (𝑣 = (𝑎 · 𝑏) → (𝑣𝐴 ↔ (𝑎 · 𝑏) ≤ 𝐴))
7877biimprcd 249 . . . . . . 7 ((𝑎 · 𝑏) ≤ 𝐴 → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
7976, 78syl6 35 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴)))
8079rexlimdvv 3221 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
819, 80syl5bi 241 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑣𝑇𝑣𝐴))
8281ralrimiv 3106 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑣𝑇 𝑣𝐴)
834simpld 494 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
8442adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
85 suprleub 11871 . . . 4 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ 𝐴 ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8683, 84, 85syl2anc 583 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8782, 86mpbird 256 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑇, ℝ, < ) ≤ 𝐴)
885, 87eqbrtrd 5092 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  2c2 11958  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  sqrlem7  14888
  Copyright terms: Public domain W3C validator