MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Structured version   Visualization version   GIF version

Theorem sqrlem6 14597
Description: Lemma for 01sqrex 14599. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem5 14596 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
54simprd 496 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
6 vex 3503 . . . . . 6 𝑣 ∈ V
7 eqeq1 2830 . . . . . . 7 (𝑦 = 𝑣 → (𝑦 = (𝑎 · 𝑏) ↔ 𝑣 = (𝑎 · 𝑏)))
872rexbidv 3305 . . . . . 6 (𝑦 = 𝑣 → (∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏) ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏)))
96, 8, 3elab2 3674 . . . . 5 (𝑣𝑇 ↔ ∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏))
10 oveq1 7155 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
1110breq1d 5073 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑎↑2) ≤ 𝐴))
1211, 1elrab2 3687 . . . . . . . . . . . . . 14 (𝑎𝑆 ↔ (𝑎 ∈ ℝ+ ∧ (𝑎↑2) ≤ 𝐴))
1312simplbi 498 . . . . . . . . . . . . 13 (𝑎𝑆𝑎 ∈ ℝ+)
14 oveq1 7155 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑥↑2) = (𝑏↑2))
1514breq1d 5073 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑏↑2) ≤ 𝐴))
1615, 1elrab2 3687 . . . . . . . . . . . . . 14 (𝑏𝑆 ↔ (𝑏 ∈ ℝ+ ∧ (𝑏↑2) ≤ 𝐴))
1716simplbi 498 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 ∈ ℝ+)
18 rpre 12387 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
1918adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
20 rpre 12387 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
2120adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
22 rpgt0 12391 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ+ → 0 < 𝑏)
2322adantl 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑏)
24 lemul1 11481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2519, 21, 21, 23, 24syl112anc 1368 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2613, 17, 25syl2an 595 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
2717rpcnd 12423 . . . . . . . . . . . . . . 15 (𝑏𝑆𝑏 ∈ ℂ)
2827sqvald 13497 . . . . . . . . . . . . . 14 (𝑏𝑆 → (𝑏↑2) = (𝑏 · 𝑏))
2928breq2d 5075 . . . . . . . . . . . . 13 (𝑏𝑆 → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3029adantl 482 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑏↑2) ↔ (𝑎 · 𝑏) ≤ (𝑏 · 𝑏)))
3126, 30bitr4d 283 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3231adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 ↔ (𝑎 · 𝑏) ≤ (𝑏↑2)))
3316simprbi 497 . . . . . . . . . . . 12 (𝑏𝑆 → (𝑏↑2) ≤ 𝐴)
3433ad2antll 725 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ≤ 𝐴)
3513rpred 12421 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 ∈ ℝ)
3617rpred 12421 . . . . . . . . . . . . . 14 (𝑏𝑆𝑏 ∈ ℝ)
37 remulcl 10611 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
3835, 36, 37syl2an 595 . . . . . . . . . . . . 13 ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ∈ ℝ)
3938adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ∈ ℝ)
4036resqcld 13601 . . . . . . . . . . . . 13 (𝑏𝑆 → (𝑏↑2) ∈ ℝ)
4140ad2antll 725 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏↑2) ∈ ℝ)
42 rpre 12387 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4342ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → 𝐴 ∈ ℝ)
44 letr 10723 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑏↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4539, 41, 43, 44syl3anc 1365 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑏↑2) ∧ (𝑏↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
4634, 45mpan2d 690 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑏↑2) → (𝑎 · 𝑏) ≤ 𝐴))
4732, 46sylbid 241 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏 → (𝑎 · 𝑏) ≤ 𝐴))
48 rpgt0 12391 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ+ → 0 < 𝑎)
4948adantr 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 0 < 𝑎)
50 lemul2 11482 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5121, 19, 19, 49, 50syl112anc 1368 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5213, 17, 51syl2an 595 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5313rpcnd 12423 . . . . . . . . . . . . . . 15 (𝑎𝑆𝑎 ∈ ℂ)
5453sqvald 13497 . . . . . . . . . . . . . 14 (𝑎𝑆 → (𝑎↑2) = (𝑎 · 𝑎))
5554breq2d 5075 . . . . . . . . . . . . 13 (𝑎𝑆 → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5655adantr 481 . . . . . . . . . . . 12 ((𝑎𝑆𝑏𝑆) → ((𝑎 · 𝑏) ≤ (𝑎↑2) ↔ (𝑎 · 𝑏) ≤ (𝑎 · 𝑎)))
5752, 56bitr4d 283 . . . . . . . . . . 11 ((𝑎𝑆𝑏𝑆) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5857adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 ↔ (𝑎 · 𝑏) ≤ (𝑎↑2)))
5912simprbi 497 . . . . . . . . . . . 12 (𝑎𝑆 → (𝑎↑2) ≤ 𝐴)
6059ad2antrl 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ≤ 𝐴)
6135resqcld 13601 . . . . . . . . . . . . 13 (𝑎𝑆 → (𝑎↑2) ∈ ℝ)
6261ad2antrl 724 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎↑2) ∈ ℝ)
63 letr 10723 . . . . . . . . . . . 12 (((𝑎 · 𝑏) ∈ ℝ ∧ (𝑎↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6439, 62, 43, 63syl3anc 1365 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (((𝑎 · 𝑏) ≤ (𝑎↑2) ∧ (𝑎↑2) ≤ 𝐴) → (𝑎 · 𝑏) ≤ 𝐴))
6560, 64mpan2d 690 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → ((𝑎 · 𝑏) ≤ (𝑎↑2) → (𝑎 · 𝑏) ≤ 𝐴))
6658, 65sylbid 241 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑏𝑎 → (𝑎 · 𝑏) ≤ 𝐴))
671, 2sqrlem3 14594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣𝑆 𝑣𝑦))
6867simp1d 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝑆 ⊆ ℝ)
6968sseld 3970 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑎𝑆𝑎 ∈ ℝ))
7068sseld 3970 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑏𝑆𝑏 ∈ ℝ))
7169, 70anim12d 608 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
7271imp 407 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
73 letric 10729 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏𝑏𝑎))
7472, 73syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑏𝑏𝑎))
7547, 66, 74mpjaod 856 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 · 𝑏) ≤ 𝐴)
7675ex 413 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑎 · 𝑏) ≤ 𝐴))
77 breq1 5066 . . . . . . . 8 (𝑣 = (𝑎 · 𝑏) → (𝑣𝐴 ↔ (𝑎 · 𝑏) ≤ 𝐴))
7877biimprcd 251 . . . . . . 7 ((𝑎 · 𝑏) ≤ 𝐴 → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
7976, 78syl6 35 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑎𝑆𝑏𝑆) → (𝑣 = (𝑎 · 𝑏) → 𝑣𝐴)))
8079rexlimdvv 3298 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (∃𝑎𝑆𝑏𝑆 𝑣 = (𝑎 · 𝑏) → 𝑣𝐴))
819, 80syl5bi 243 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑣𝑇𝑣𝐴))
8281ralrimiv 3186 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑣𝑇 𝑣𝐴)
834simpld 495 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
8442adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
85 suprleub 11596 . . . 4 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ 𝐴 ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8683, 84, 85syl2anc 584 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑇, ℝ, < ) ≤ 𝐴 ↔ ∀𝑣𝑇 𝑣𝐴))
8782, 86mpbird 258 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑇, ℝ, < ) ≤ 𝐴)
885, 87eqbrtrd 5085 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  {cab 2804  wne 3021  wral 3143  wrex 3144  {crab 3147  wss 3940  c0 4295   class class class wbr 5063  (class class class)co 7148  supcsup 8893  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  2c2 11681  +crp 12379  cexp 13419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420
This theorem is referenced by:  sqrlem7  14598
  Copyright terms: Public domain W3C validator