MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  circgrp Structured version   Visualization version   GIF version

Theorem circgrp 25138
Description: The circle group 𝑇 is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
circgrp.1 𝐶 = (abs “ {1})
circgrp.2 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶)
Assertion
Ref Expression
circgrp 𝑇 ∈ Abel

Proof of Theorem circgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
21fveq2d 6676 . . . 4 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
32cbvmptv 5171 . . 3 (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) = (𝑦 ∈ ℝ ↦ (exp‘(i · 𝑦)))
4 circgrp.2 . . . 4 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶)
5 circgrp.1 . . . . . . . 8 𝐶 = (abs “ {1})
63, 5efifo 25133 . . . . . . 7 (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))):ℝ–onto𝐶
7 forn 6595 . . . . . . 7 ((𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))):ℝ–onto𝐶 → ran (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) = 𝐶)
86, 7ax-mp 5 . . . . . 6 ran (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) = 𝐶
98eqcomi 2832 . . . . 5 𝐶 = ran (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))
109oveq2i 7169 . . . 4 ((mulGrp‘ℂfld) ↾s 𝐶) = ((mulGrp‘ℂfld) ↾s ran (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))))
114, 10eqtri 2846 . . 3 𝑇 = ((mulGrp‘ℂfld) ↾s ran (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))))
12 ax-icn 10598 . . . 4 i ∈ ℂ
1312a1i 11 . . 3 (⊤ → i ∈ ℂ)
14 resubdrg 20754 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
1514simpli 486 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
16 subrgsubg 19543 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
1715, 16ax-mp 5 . . . 4 ℝ ∈ (SubGrp‘ℂfld)
1817a1i 11 . . 3 (⊤ → ℝ ∈ (SubGrp‘ℂfld))
193, 11, 13, 18efabl 25136 . 2 (⊤ → 𝑇 ∈ Abel)
2019mptru 1544 1 𝑇 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  wcel 2114  {csn 4569  cmpt 5148  ccnv 5556  ran crn 5558  cima 5560  ontowfo 6355  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540  ici 10541   · cmul 10544  abscabs 14595  expce 15417  s cress 16486  SubGrpcsubg 18275  Abelcabl 18909  mulGrpcmgp 19241  DivRingcdr 19504  SubRingcsubrg 19533  fldccnfld 20547  fldcrefld 20750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-subrg 19535  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-refld 20751  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator