![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumcnsrcl | Structured version Visualization version GIF version |
Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
fsumcnsrcl.s | β’ (π β π β (SubRingββfld)) |
fsumcnsrcl.a | β’ (π β π΄ β Fin) |
fsumcnsrcl.b | β’ ((π β§ π β π΄) β π΅ β π) |
Ref | Expression |
---|---|
fsumcnsrcl | β’ (π β Ξ£π β π΄ π΅ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcnsrcl.s | . . 3 β’ (π β π β (SubRingββfld)) | |
2 | cnfldbas 20947 | . . . 4 β’ β = (Baseββfld) | |
3 | 2 | subrgss 20319 | . . 3 β’ (π β (SubRingββfld) β π β β) |
4 | 1, 3 | syl 17 | . 2 β’ (π β π β β) |
5 | cnfldadd 20948 | . . . . 5 β’ + = (+gββfld) | |
6 | 5 | subrgacl 20329 | . . . 4 β’ ((π β (SubRingββfld) β§ π β π β§ π β π) β (π + π) β π) |
7 | 6 | 3expb 1120 | . . 3 β’ ((π β (SubRingββfld) β§ (π β π β§ π β π)) β (π + π) β π) |
8 | 1, 7 | sylan 580 | . 2 β’ ((π β§ (π β π β§ π β π)) β (π + π) β π) |
9 | fsumcnsrcl.a | . 2 β’ (π β π΄ β Fin) | |
10 | fsumcnsrcl.b | . 2 β’ ((π β§ π β π΄) β π΅ β π) | |
11 | subrgsubg 20324 | . . 3 β’ (π β (SubRingββfld) β π β (SubGrpββfld)) | |
12 | cnfld0 20968 | . . . 4 β’ 0 = (0gββfld) | |
13 | 12 | subg0cl 19013 | . . 3 β’ (π β (SubGrpββfld) β 0 β π) |
14 | 1, 11, 13 | 3syl 18 | . 2 β’ (π β 0 β π) |
15 | 4, 8, 9, 10, 14 | fsumcllem 15677 | 1 β’ (π β Ξ£π β π΄ π΅ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 β wss 3948 βcfv 6543 (class class class)co 7408 Fincfn 8938 βcc 11107 0cc0 11109 + caddc 11112 Ξ£csu 15631 SubGrpcsubg 18999 SubRingcsubrg 20314 βfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-subg 19002 df-cmn 19649 df-mgp 19987 df-ring 20057 df-cring 20058 df-subrg 20316 df-cnfld 20944 |
This theorem is referenced by: cnsrplycl 41899 |
Copyright terms: Public domain | W3C validator |