![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumcnsrcl | Structured version Visualization version GIF version |
Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
fsumcnsrcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
fsumcnsrcl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumcnsrcl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fsumcnsrcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcnsrcl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
2 | cnfldbas 20071 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
3 | 2 | subrgss 19098 | . . 3 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
5 | cnfldadd 20072 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
6 | 5 | subrgacl 19108 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎 + 𝑏) ∈ 𝑆) |
7 | 6 | 3expb 1150 | . . 3 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
8 | 1, 7 | sylan 576 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
9 | fsumcnsrcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fsumcnsrcl.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
11 | subrgsubg 19103 | . . 3 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
12 | cnfld0 20091 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
13 | 12 | subg0cl 17914 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
14 | 1, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → 0 ∈ 𝑆) |
15 | 4, 8, 9, 10, 14 | fsumcllem 14803 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3770 ‘cfv 6102 (class class class)co 6879 Fincfn 8196 ℂcc 10223 0cc0 10225 + caddc 10228 Σcsu 14756 SubGrpcsubg 17900 SubRingcsubrg 19093 ℂfldccnfld 20067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 ax-addf 10304 ax-mulf 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-sup 8591 df-oi 8658 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-rp 12074 df-fz 12580 df-fzo 12720 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-clim 14559 df-sum 14757 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-starv 16281 df-tset 16285 df-ple 16286 df-ds 16288 df-unif 16289 df-0g 16416 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-grp 17740 df-subg 17903 df-cmn 18509 df-mgp 18805 df-ring 18864 df-cring 18865 df-subrg 19095 df-cnfld 20068 |
This theorem is referenced by: cnsrplycl 38517 |
Copyright terms: Public domain | W3C validator |