![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumcnsrcl | Structured version Visualization version GIF version |
Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
fsumcnsrcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
fsumcnsrcl.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumcnsrcl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fsumcnsrcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcnsrcl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
2 | cnfldbas 21385 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
3 | 2 | subrgss 20594 | . . 3 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
5 | cnfldadd 21387 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
6 | 5 | subrgacl 20605 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎 + 𝑏) ∈ 𝑆) |
7 | 6 | 3expb 1120 | . . 3 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
8 | 1, 7 | sylan 579 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
9 | fsumcnsrcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fsumcnsrcl.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
11 | subrgsubg 20599 | . . 3 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld)) | |
12 | cnfld0 21422 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
13 | 12 | subg0cl 19168 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆) |
14 | 1, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → 0 ∈ 𝑆) |
15 | 4, 8, 9, 10, 14 | fsumcllem 15774 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Fincfn 8997 ℂcc 11176 0cc0 11178 + caddc 11181 Σcsu 15728 SubGrpcsubg 19154 SubRingcsubrg 20589 ℂfldccnfld 21381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-inf2 9704 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-sup 9505 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-rp 13052 df-fz 13562 df-fzo 13706 df-seq 14047 df-exp 14107 df-hash 14374 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-clim 15528 df-sum 15729 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-0g 17495 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18970 df-subg 19157 df-cmn 19818 df-mgp 20156 df-ring 20256 df-cring 20257 df-subrg 20591 df-cnfld 21382 |
This theorem is referenced by: cnsrplycl 43119 |
Copyright terms: Public domain | W3C validator |