Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcnsrcl Structured version   Visualization version   GIF version

Theorem fsumcnsrcl 43149
Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
fsumcnsrcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
fsumcnsrcl.a (𝜑𝐴 ∈ Fin)
fsumcnsrcl.b ((𝜑𝑘𝐴) → 𝐵𝑆)
Assertion
Ref Expression
fsumcnsrcl (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑆,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcnsrcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcnsrcl.s . . 3 (𝜑𝑆 ∈ (SubRing‘ℂfld))
2 cnfldbas 21301 . . . 4 ℂ = (Base‘ℂfld)
32subrgss 20493 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
41, 3syl 17 . 2 (𝜑𝑆 ⊆ ℂ)
5 cnfldadd 21303 . . . . 5 + = (+g‘ℂfld)
65subrgacl 20504 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝑆𝑏𝑆) → (𝑎 + 𝑏) ∈ 𝑆)
763expb 1120 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
81, 7sylan 580 . 2 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
9 fsumcnsrcl.a . 2 (𝜑𝐴 ∈ Fin)
10 fsumcnsrcl.b . 2 ((𝜑𝑘𝐴) → 𝐵𝑆)
11 subrgsubg 20498 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
12 cnfld0 21335 . . . 4 0 = (0g‘ℂfld)
1312subg0cl 19049 . . 3 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
141, 11, 133syl 18 . 2 (𝜑 → 0 ∈ 𝑆)
154, 8, 9, 10, 14fsumcllem 15675 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11044  0cc0 11046   + caddc 11049  Σcsu 15629  SubGrpcsubg 19035  SubRingcsubrg 20490  fldccnfld 21297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-rp 12930  df-fz 13447  df-fzo 13594  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15431  df-sum 15630  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-subg 19038  df-cmn 19697  df-mgp 20062  df-ring 20156  df-cring 20157  df-subrg 20491  df-cnfld 21298
This theorem is referenced by:  cnsrplycl  43150
  Copyright terms: Public domain W3C validator