MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprecl Structured version   Visualization version   GIF version

Theorem pcprecl 16425
Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcprecl ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcprecl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.2 . . 3 𝑆 = sup(𝐴, ℝ, < )
2 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
32pclem 16424 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℤ ∀𝑧𝐴 𝑧𝑦))
4 suprzcl2 12564 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℤ ∀𝑧𝐴 𝑧𝑦) → sup(𝐴, ℝ, < ) ∈ 𝐴)
53, 4syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
61, 5eqeltrid 2844 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆𝐴)
7 oveq2 7243 . . . 4 (𝑥 = 𝑆 → (𝑃𝑥) = (𝑃𝑆))
87breq1d 5080 . . 3 (𝑥 = 𝑆 → ((𝑃𝑥) ∥ 𝑁 ↔ (𝑃𝑆) ∥ 𝑁))
9 oveq2 7243 . . . . . 6 (𝑛 = 𝑥 → (𝑃𝑛) = (𝑃𝑥))
109breq1d 5080 . . . . 5 (𝑛 = 𝑥 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑥) ∥ 𝑁))
1110cbvrabv 3417 . . . 4 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
122, 11eqtri 2767 . . 3 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
138, 12elrab2 3620 . 2 (𝑆𝐴 ↔ (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
146, 13sylib 221 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3883  c0 4254   class class class wbr 5070  cfv 6401  (class class class)co 7235  supcsup 9086  cr 10758  0cc0 10759   < clt 10897  cle 10898  2c2 11915  0cn0 12120  cz 12206  cuz 12468  cexp 13667  cdvds 15848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836  ax-pre-sup 10837
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-sup 9088  df-inf 9089  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-div 11520  df-nn 11861  df-2 11923  df-3 11924  df-n0 12121  df-z 12207  df-uz 12469  df-rp 12617  df-fl 13397  df-seq 13607  df-exp 13668  df-cj 14695  df-re 14696  df-im 14697  df-sqrt 14831  df-abs 14832  df-dvds 15849
This theorem is referenced by:  pcprendvds  16426  pcprendvds2  16427  pcpre1  16428  pcpremul  16429  pceulem  16431  pczpre  16433  pczcl  16434  pczdvds  16449
  Copyright terms: Public domain W3C validator