MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem0 Structured version   Visualization version   GIF version

Theorem smadiadetlem0 22550
Description: Lemma 0 for smadiadet 22559: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
smadiadetlem.p 𝑃 = (Base‘(SymGrp‘𝑁))
smadiadetlem.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
smadiadetlem0 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
Distinct variable groups:   𝑖,𝑗,𝑛,𝐵   𝑖,𝑞,𝐾,𝑗,𝑛   𝑖,𝐿,𝑗,𝑛,𝑞   𝑖,𝑀,𝑗,𝑛   𝑖,𝑁,𝑗,𝑛   𝑃,𝑖,𝑗,𝑛,𝑞   𝑄,𝑖,𝑗,𝑛,𝑞   𝑅,𝑖,𝑗,𝑛   1 ,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑛,𝑞)   𝐵(𝑞)   𝑅(𝑞)   1 (𝑞)   𝐺(𝑖,𝑗,𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Proof of Theorem smadiadetlem0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 smadiadetlem.g . . 3 𝐺 = (mulGrp‘𝑅)
2 marep01ma.0 . . 3 0 = (0g𝑅)
3 marep01ma.r . . . 4 𝑅 ∈ CRing
43a1i 11 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ CRing)
5 marep01ma.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
6 marep01ma.b . . . . . . 7 𝐵 = (Base‘𝐴)
75, 6matrcl 22299 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 494 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
983ad2ant1 1131 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝑁 ∈ Fin)
109adantr 480 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑁 ∈ Fin)
11 crngring 20176 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11mp1i 13 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ Ring)
13 eldifi 4122 . . . . . . 7 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
1413adantl 481 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑄𝑃)
15 marep01ma.1 . . . . . . . . 9 1 = (1r𝑅)
165, 6, 3, 2, 15marep01ma 22549 . . . . . . . 8 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
17163ad2ant1 1131 . . . . . . 7 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
1817adantr 480 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
19 smadiadetlem.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
205, 6, 19matepm2cl 22352 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄𝑃 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
2112, 14, 18, 20syl3anc 1369 . . . . 5 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
22 id 22 . . . . . . . 8 (𝑚 = 𝑛𝑚 = 𝑛)
23 fveq2 6891 . . . . . . . 8 (𝑚 = 𝑛 → (𝑄𝑚) = (𝑄𝑛))
2422, 23oveq12d 7432 . . . . . . 7 (𝑚 = 𝑛 → (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))
2524eleq1d 2813 . . . . . 6 (𝑚 = 𝑛 → ((𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) ↔ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2625rspccv 3604 . . . . 5 (∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2721, 26syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2827imp 406 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛𝑁) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅))
29 id 22 . . . . 5 (𝑛 = 𝑚𝑛 = 𝑚)
30 fveq2 6891 . . . . 5 (𝑛 = 𝑚 → (𝑄𝑛) = (𝑄𝑚))
3129, 30oveq12d 7432 . . . 4 (𝑛 = 𝑚 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3231adantl 481 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛 = 𝑚) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3319, 2, 15symgmatr01 22543 . . . . 5 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
34333adant1 1128 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
3534imp 406 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 )
361, 2, 4, 10, 28, 32, 35gsummgp0 20243 . 2 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 )
3736ex 412 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  {crab 3427  Vcvv 3469  cdif 3941  ifcif 4524  cmpt 5225  cfv 6542  (class class class)co 7414  cmpo 7416  Fincfn 8955  Basecbs 17171  0gc0g 17412   Σg cgsu 17413  SymGrpcsymg 19312  mulGrpcmgp 20065  1rcur 20112  Ringcrg 20164  CRingccrg 20165   Mat cmat 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-efmnd 18812  df-grp 18884  df-minusg 18885  df-mulg 19015  df-cntz 19259  df-symg 19313  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-mat 22295
This theorem is referenced by:  smadiadetlem1a  22552
  Copyright terms: Public domain W3C validator