MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem0 Structured version   Visualization version   GIF version

Theorem smadiadetlem0 22485
Description: Lemma 0 for smadiadet 22494: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
smadiadetlem.p 𝑃 = (Base‘(SymGrp‘𝑁))
smadiadetlem.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
smadiadetlem0 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
Distinct variable groups:   𝑖,𝑗,𝑛,𝐵   𝑖,𝑞,𝐾,𝑗,𝑛   𝑖,𝐿,𝑗,𝑛,𝑞   𝑖,𝑀,𝑗,𝑛   𝑖,𝑁,𝑗,𝑛   𝑃,𝑖,𝑗,𝑛,𝑞   𝑄,𝑖,𝑗,𝑛,𝑞   𝑅,𝑖,𝑗,𝑛   1 ,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑛,𝑞)   𝐵(𝑞)   𝑅(𝑞)   1 (𝑞)   𝐺(𝑖,𝑗,𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Proof of Theorem smadiadetlem0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 smadiadetlem.g . . 3 𝐺 = (mulGrp‘𝑅)
2 marep01ma.0 . . 3 0 = (0g𝑅)
3 marep01ma.r . . . 4 𝑅 ∈ CRing
43a1i 11 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ CRing)
5 marep01ma.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
6 marep01ma.b . . . . . . 7 𝐵 = (Base‘𝐴)
75, 6matrcl 22234 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 494 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
983ad2ant1 1130 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝑁 ∈ Fin)
109adantr 480 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑁 ∈ Fin)
11 crngring 20140 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11mp1i 13 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ Ring)
13 eldifi 4118 . . . . . . 7 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
1413adantl 481 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑄𝑃)
15 marep01ma.1 . . . . . . . . 9 1 = (1r𝑅)
165, 6, 3, 2, 15marep01ma 22484 . . . . . . . 8 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
17163ad2ant1 1130 . . . . . . 7 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
1817adantr 480 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
19 smadiadetlem.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
205, 6, 19matepm2cl 22287 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄𝑃 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
2112, 14, 18, 20syl3anc 1368 . . . . 5 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
22 id 22 . . . . . . . 8 (𝑚 = 𝑛𝑚 = 𝑛)
23 fveq2 6881 . . . . . . . 8 (𝑚 = 𝑛 → (𝑄𝑚) = (𝑄𝑛))
2422, 23oveq12d 7419 . . . . . . 7 (𝑚 = 𝑛 → (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))
2524eleq1d 2810 . . . . . 6 (𝑚 = 𝑛 → ((𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) ↔ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2625rspccv 3601 . . . . 5 (∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2721, 26syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2827imp 406 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛𝑁) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅))
29 id 22 . . . . 5 (𝑛 = 𝑚𝑛 = 𝑚)
30 fveq2 6881 . . . . 5 (𝑛 = 𝑚 → (𝑄𝑛) = (𝑄𝑚))
3129, 30oveq12d 7419 . . . 4 (𝑛 = 𝑚 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3231adantl 481 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛 = 𝑚) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3319, 2, 15symgmatr01 22478 . . . . 5 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
34333adant1 1127 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
3534imp 406 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 )
361, 2, 4, 10, 28, 32, 35gsummgp0 20207 . 2 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 )
3736ex 412 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wrex 3062  {crab 3424  Vcvv 3466  cdif 3937  ifcif 4520  cmpt 5221  cfv 6533  (class class class)co 7401  cmpo 7403  Fincfn 8935  Basecbs 17143  0gc0g 17384   Σg cgsu 17385  SymGrpcsymg 19276  mulGrpcmgp 20029  1rcur 20076  Ringcrg 20128  CRingccrg 20129   Mat cmat 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-ot 4629  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-efmnd 18784  df-grp 18856  df-minusg 18857  df-mulg 18986  df-cntz 19223  df-symg 19277  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-sra 21011  df-rgmod 21012  df-dsmm 21595  df-frlm 21610  df-mat 22230
This theorem is referenced by:  smadiadetlem1a  22487
  Copyright terms: Public domain W3C validator