Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem0 Structured version   Visualization version   GIF version

 Description: Lemma 0 for smadiadet 20893: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
Assertion
Ref Expression
smadiadetlem0 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
Distinct variable groups:   𝑖,𝑗,𝑛,𝐵   𝑖,𝑞,𝐾,𝑗,𝑛   𝑖,𝐿,𝑗,𝑛,𝑞   𝑖,𝑀,𝑗,𝑛   𝑖,𝑁,𝑗,𝑛   𝑃,𝑖,𝑗,𝑛,𝑞   𝑄,𝑖,𝑗,𝑛,𝑞   𝑅,𝑖,𝑗,𝑛   1 ,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑛,𝑞)   𝐵(𝑞)   𝑅(𝑞)   1 (𝑞)   𝐺(𝑖,𝑗,𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
2 marep01ma.0 . . 3 0 = (0g𝑅)
3 marep01ma.r . . . 4 𝑅 ∈ CRing
43a1i 11 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ CRing)
5 marep01ma.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
6 marep01ma.b . . . . . . 7 𝐵 = (Base‘𝐴)
75, 6matrcl 20633 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 490 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
983ad2ant1 1124 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝑁 ∈ Fin)
109adantr 474 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑁 ∈ Fin)
11 crngring 18956 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11mp1i 13 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑅 ∈ Ring)
13 eldifi 3955 . . . . . . 7 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
1413adantl 475 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝑄𝑃)
15 marep01ma.1 . . . . . . . . 9 1 = (1r𝑅)
165, 6, 3, 2, 15marep01ma 20883 . . . . . . . 8 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
17163ad2ant1 1124 . . . . . . 7 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
1817adantr 474 . . . . . 6 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵)
19 smadiadetlem.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
205, 6, 19matepm2cl 20685 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄𝑃 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
2112, 14, 18, 20syl3anc 1439 . . . . 5 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅))
22 id 22 . . . . . . . 8 (𝑚 = 𝑛𝑚 = 𝑛)
23 fveq2 6448 . . . . . . . 8 (𝑚 = 𝑛 → (𝑄𝑚) = (𝑄𝑛))
2422, 23oveq12d 6942 . . . . . . 7 (𝑚 = 𝑛 → (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))
2524eleq1d 2844 . . . . . 6 (𝑚 = 𝑛 → ((𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) ↔ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2625rspccv 3508 . . . . 5 (∀𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) ∈ (Base‘𝑅) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2721, 26syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑛𝑁 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅)))
2827imp 397 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛𝑁) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) ∈ (Base‘𝑅))
29 id 22 . . . . 5 (𝑛 = 𝑚𝑛 = 𝑚)
30 fveq2 6448 . . . . 5 (𝑛 = 𝑚 → (𝑄𝑛) = (𝑄𝑚))
3129, 30oveq12d 6942 . . . 4 (𝑛 = 𝑚 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3231adantl 475 . . 3 ((((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑛 = 𝑚) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)) = (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)))
3319, 2, 15symgmatr01 20877 . . . . 5 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
34333adant1 1121 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 ))
3534imp 397 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑚𝑁 (𝑚(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑚)) = 0 )
361, 2, 4, 10, 28, 32, 35gsummgp0 19006 . 2 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 )
3736ex 403 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  ∀wral 3090  ∃wrex 3091  {crab 3094  Vcvv 3398   ∖ cdif 3789  ifcif 4307   ↦ cmpt 4967  ‘cfv 6137  (class class class)co 6924   ↦ cmpt2 6926  Fincfn 8243  Basecbs 16266  0gc0g 16497   Σg cgsu 16498  SymGrpcsymg 18191  mulGrpcmgp 18887  1rcur 18899  Ringcrg 18945  CRingccrg 18946   Mat cmat 20628 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-fz 12649  df-fzo 12790  df-seq 13125  df-hash 13442  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-hom 16373  df-cco 16374  df-0g 16499  df-gsum 16500  df-prds 16505  df-pws 16507  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-grp 17823  df-mulg 17939  df-cntz 18144  df-symg 18192  df-cmn 18592  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-sra 19580  df-rgmod 19581  df-dsmm 20486  df-frlm 20501  df-mat 20629 This theorem is referenced by:  smadiadetlem1a  20886
 Copyright terms: Public domain W3C validator