| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smadiadetlem0 | Structured version Visualization version GIF version | ||
| Description: Lemma 0 for smadiadet 22573: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.) |
| Ref | Expression |
|---|---|
| marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
| marep01ma.r | ⊢ 𝑅 ∈ CRing |
| marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
| marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
| smadiadetlem.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| smadiadetlem.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| smadiadetlem0 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smadiadetlem.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 2 | marep01ma.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | marep01ma.r | . . . 4 ⊢ 𝑅 ∈ CRing | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ CRing) |
| 5 | marep01ma.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 6 | marep01ma.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
| 7 | 5, 6 | matrcl 22315 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 9 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 10 | 9 | adantr 480 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑁 ∈ Fin) |
| 11 | crngring 20148 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 3, 11 | mp1i 13 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑅 ∈ Ring) |
| 13 | eldifi 4084 | . . . . . . 7 ⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑄 ∈ 𝑃) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝑄 ∈ 𝑃) |
| 15 | marep01ma.1 | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 16 | 5, 6, 3, 2, 15 | marep01ma 22563 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) |
| 19 | smadiadetlem.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 20 | 5, 6, 19 | matepm2cl 22366 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) ∈ 𝐵) → ∀𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅)) |
| 21 | 12, 14, 18, 20 | syl3anc 1373 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∀𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅)) |
| 22 | id 22 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) | |
| 23 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → (𝑄‘𝑚) = (𝑄‘𝑛)) | |
| 24 | 22, 23 | oveq12d 7371 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛))) |
| 25 | 24 | eleq1d 2813 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅) ↔ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
| 26 | 25 | rspccv 3576 | . . . . 5 ⊢ (∀𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) ∈ (Base‘𝑅) → (𝑛 ∈ 𝑁 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
| 27 | 21, 26 | syl 17 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝑛 ∈ 𝑁 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅))) |
| 28 | 27 | imp 406 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑛 ∈ 𝑁) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
| 29 | id 22 | . . . . 5 ⊢ (𝑛 = 𝑚 → 𝑛 = 𝑚) | |
| 30 | fveq2 6826 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑄‘𝑛) = (𝑄‘𝑚)) | |
| 31 | 29, 30 | oveq12d 7371 | . . . 4 ⊢ (𝑛 = 𝑚 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) = (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚))) |
| 32 | 31 | adantl 481 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑛 = 𝑚) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)) = (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚))) |
| 33 | 19, 2, 15 | symgmatr01 22557 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 )) |
| 34 | 33 | 3adant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 )) |
| 35 | 34 | imp 406 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑚 ∈ 𝑁 (𝑚(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑚)) = 0 ) |
| 36 | 1, 2, 4, 10, 28, 32, 35 | gsummgp0 20221 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 ) |
| 37 | 36 | ex 412 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑛)))) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3396 Vcvv 3438 ∖ cdif 3902 ifcif 4478 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Fincfn 8879 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 SymGrpcsymg 19266 mulGrpcmgp 20043 1rcur 20084 Ringcrg 20136 CRingccrg 20137 Mat cmat 22310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-mulg 18965 df-cntz 19214 df-symg 19267 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mat 22311 |
| This theorem is referenced by: smadiadetlem1a 22566 |
| Copyright terms: Public domain | W3C validator |