MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf1o Structured version   Visualization version   GIF version

Theorem tpf1o 14540
Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf1o (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf1o
StepHypRef Expression
1 tpf1o.f . . . 4 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpfo 14539 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
43adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–onto𝑇)
5 3nn0 12544 . . . . 5 3 ∈ ℕ0
6 hashfzo0 14469 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
75, 6ax-mp 5 . . . 4 (♯‘(0..^3)) = 3
8 eqcom 2744 . . . . . 6 ((♯‘𝑇) = 3 ↔ 3 = (♯‘𝑇))
98biimpi 216 . . . . 5 ((♯‘𝑇) = 3 → 3 = (♯‘𝑇))
109adantl 481 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 3 = (♯‘𝑇))
117, 10eqtrid 2789 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (♯‘(0..^3)) = (♯‘𝑇))
12 fzofi 14015 . . . . 5 (0..^3) ∈ Fin
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (0..^3) ∈ Fin)
14 tpfi 9365 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
152, 14eqeltri 2837 . . . . 5 𝑇 ∈ Fin
1615a1i 11 . . . 4 ((♯‘𝑇) = 3 → 𝑇 ∈ Fin)
17 hashen 14386 . . . 4 (((0..^3) ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1813, 16, 17syl2an 596 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1911, 18mpbid 232 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (0..^3) ≈ 𝑇)
2015a1i 11 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝑇 ∈ Fin)
21 fofinf1o 9372 . 2 ((𝐹:(0..^3)–onto𝑇 ∧ (0..^3) ≈ 𝑇𝑇 ∈ Fin) → 𝐹:(0..^3)–1-1-onto𝑇)
224, 19, 20, 21syl3anc 1373 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  ifcif 4525  {ctp 4630   class class class wbr 5143  cmpt 5225  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cen 8982  Fincfn 8985  0cc0 11155  1c1 11156  3c3 12322  0cn0 12526  ..^cfzo 13694  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370
This theorem is referenced by:  isgrtri  47910
  Copyright terms: Public domain W3C validator