MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf1o Structured version   Visualization version   GIF version

Theorem tpf1o 14519
Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf1o (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf1o
StepHypRef Expression
1 tpf1o.f . . . 4 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpfo 14518 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
43adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–onto𝑇)
5 3nn0 12519 . . . . 5 3 ∈ ℕ0
6 hashfzo0 14448 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
75, 6ax-mp 5 . . . 4 (♯‘(0..^3)) = 3
8 eqcom 2742 . . . . . 6 ((♯‘𝑇) = 3 ↔ 3 = (♯‘𝑇))
98biimpi 216 . . . . 5 ((♯‘𝑇) = 3 → 3 = (♯‘𝑇))
109adantl 481 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 3 = (♯‘𝑇))
117, 10eqtrid 2782 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (♯‘(0..^3)) = (♯‘𝑇))
12 fzofi 13992 . . . . 5 (0..^3) ∈ Fin
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (0..^3) ∈ Fin)
14 tpfi 9337 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
152, 14eqeltri 2830 . . . . 5 𝑇 ∈ Fin
1615a1i 11 . . . 4 ((♯‘𝑇) = 3 → 𝑇 ∈ Fin)
17 hashen 14365 . . . 4 (((0..^3) ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1813, 16, 17syl2an 596 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1911, 18mpbid 232 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (0..^3) ≈ 𝑇)
2015a1i 11 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝑇 ∈ Fin)
21 fofinf1o 9344 . 2 ((𝐹:(0..^3)–onto𝑇 ∧ (0..^3) ≈ 𝑇𝑇 ∈ Fin) → 𝐹:(0..^3)–1-1-onto𝑇)
224, 19, 20, 21syl3anc 1373 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  ifcif 4500  {ctp 4605   class class class wbr 5119  cmpt 5201  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cen 8956  Fincfn 8959  0cc0 11129  1c1 11130  3c3 12296  0cn0 12501  ..^cfzo 13671  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349
This theorem is referenced by:  isgrtri  47955
  Copyright terms: Public domain W3C validator