MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf1o Structured version   Visualization version   GIF version

Theorem tpf1o 14550
Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf1o (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf1o
StepHypRef Expression
1 tpf1o.f . . . 4 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpfo 14549 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
43adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–onto𝑇)
5 3nn0 12571 . . . . 5 3 ∈ ℕ0
6 hashfzo0 14479 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
75, 6ax-mp 5 . . . 4 (♯‘(0..^3)) = 3
8 eqcom 2747 . . . . . 6 ((♯‘𝑇) = 3 ↔ 3 = (♯‘𝑇))
98biimpi 216 . . . . 5 ((♯‘𝑇) = 3 → 3 = (♯‘𝑇))
109adantl 481 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 3 = (♯‘𝑇))
117, 10eqtrid 2792 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (♯‘(0..^3)) = (♯‘𝑇))
12 fzofi 14025 . . . . 5 (0..^3) ∈ Fin
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (0..^3) ∈ Fin)
14 tpfi 9393 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
152, 14eqeltri 2840 . . . . 5 𝑇 ∈ Fin
1615a1i 11 . . . 4 ((♯‘𝑇) = 3 → 𝑇 ∈ Fin)
17 hashen 14396 . . . 4 (((0..^3) ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1813, 16, 17syl2an 595 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇))
1911, 18mpbid 232 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → (0..^3) ≈ 𝑇)
2015a1i 11 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝑇 ∈ Fin)
21 fofinf1o 9400 . 2 ((𝐹:(0..^3)–onto𝑇 ∧ (0..^3) ≈ 𝑇𝑇 ∈ Fin) → 𝐹:(0..^3)–1-1-onto𝑇)
224, 19, 20, 21syl3anc 1371 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548  {ctp 4652   class class class wbr 5166  cmpt 5249  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cen 9000  Fincfn 9003  0cc0 11184  1c1 11185  3c3 12349  0cn0 12553  ..^cfzo 13711  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380
This theorem is referenced by:  isgrtri  47794
  Copyright terms: Public domain W3C validator