| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpf1o | Structured version Visualization version GIF version | ||
| Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| tpf1o.f | ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) |
| tpf.t | ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} |
| Ref | Expression |
|---|---|
| tpf1o | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto→𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) | |
| 2 | tpf.t | . . . 4 ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} | |
| 3 | 1, 2 | tpfo 14399 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐹:(0..^3)–onto→𝑇) |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–onto→𝑇) |
| 5 | 3nn0 12391 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 6 | hashfzo0 14329 | . . . . 5 ⊢ (3 ∈ ℕ0 → (♯‘(0..^3)) = 3) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (♯‘(0..^3)) = 3 |
| 8 | eqcom 2737 | . . . . . 6 ⊢ ((♯‘𝑇) = 3 ↔ 3 = (♯‘𝑇)) | |
| 9 | 8 | biimpi 216 | . . . . 5 ⊢ ((♯‘𝑇) = 3 → 3 = (♯‘𝑇)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → 3 = (♯‘𝑇)) |
| 11 | 7, 10 | eqtrid 2777 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → (♯‘(0..^3)) = (♯‘𝑇)) |
| 12 | fzofi 13873 | . . . . 5 ⊢ (0..^3) ∈ Fin | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (0..^3) ∈ Fin) |
| 14 | tpfi 9205 | . . . . . 6 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
| 15 | 2, 14 | eqeltri 2825 | . . . . 5 ⊢ 𝑇 ∈ Fin |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((♯‘𝑇) = 3 → 𝑇 ∈ Fin) |
| 17 | hashen 14246 | . . . 4 ⊢ (((0..^3) ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇)) | |
| 18 | 13, 16, 17 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (0..^3) ≈ 𝑇)) |
| 19 | 11, 18 | mpbid 232 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → (0..^3) ≈ 𝑇) |
| 20 | 15 | a1i 11 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → 𝑇 ∈ Fin) |
| 21 | fofinf1o 9211 | . 2 ⊢ ((𝐹:(0..^3)–onto→𝑇 ∧ (0..^3) ≈ 𝑇 ∧ 𝑇 ∈ Fin) → 𝐹:(0..^3)–1-1-onto→𝑇) | |
| 22 | 4, 19, 20, 21 | syl3anc 1373 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (♯‘𝑇) = 3) → 𝐹:(0..^3)–1-1-onto→𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ifcif 4473 {ctp 4578 class class class wbr 5089 ↦ cmpt 5170 –onto→wfo 6475 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 ≈ cen 8861 Fincfn 8864 0cc0 10998 1c1 10999 3c3 12173 ℕ0cn0 12373 ..^cfzo 13546 ♯chash 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 |
| This theorem is referenced by: isgrtri 47953 |
| Copyright terms: Public domain | W3C validator |