Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3wlkond | Structured version Visualization version GIF version |
Description: A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
3wlkond | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
2 | 3wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
3 | 3wlkd.s | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
4 | 3wlkd.n | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
5 | 3wlkd.e | . . . 4 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
6 | 3wlkd.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 3wlkd.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 3wlkd 28099 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | 8 | wlkonwlk1l 27597 | . 2 ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
10 | 1, 2, 3 | 3wlkdlem3 28090 | . . . . 5 ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
11 | simpll 767 | . . . . . 6 ⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘0) = 𝐴) | |
12 | 11 | eqcomd 2744 | . . . . 5 ⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → 𝐴 = (𝑃‘0)) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑃‘0)) |
14 | 1 | fveq2i 6671 | . . . . . . 7 ⊢ (lastS‘𝑃) = (lastS‘〈“𝐴𝐵𝐶𝐷”〉) |
15 | fvex 6681 | . . . . . . . . 9 ⊢ (𝑃‘3) ∈ V | |
16 | eleq1 2820 | . . . . . . . . 9 ⊢ ((𝑃‘3) = 𝐷 → ((𝑃‘3) ∈ V ↔ 𝐷 ∈ V)) | |
17 | 15, 16 | mpbii 236 | . . . . . . . 8 ⊢ ((𝑃‘3) = 𝐷 → 𝐷 ∈ V) |
18 | lsws4 14350 | . . . . . . . 8 ⊢ (𝐷 ∈ V → (lastS‘〈“𝐴𝐵𝐶𝐷”〉) = 𝐷) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝑃‘3) = 𝐷 → (lastS‘〈“𝐴𝐵𝐶𝐷”〉) = 𝐷) |
20 | 14, 19 | eqtr2id 2786 | . . . . . 6 ⊢ ((𝑃‘3) = 𝐷 → 𝐷 = (lastS‘𝑃)) |
21 | 20 | ad2antll 729 | . . . . 5 ⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → 𝐷 = (lastS‘𝑃)) |
22 | 10, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 = (lastS‘𝑃)) |
23 | 13, 22 | oveq12d 7182 | . . 3 ⊢ (𝜑 → (𝐴(WalksOn‘𝐺)𝐷) = ((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))) |
24 | 23 | breqd 5038 | . 2 ⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃 ↔ 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)) |
25 | 9, 24 | mpbird 260 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐷)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 Vcvv 3397 ⊆ wss 3841 {cpr 4515 class class class wbr 5027 ‘cfv 6333 (class class class)co 7164 0cc0 10608 1c1 10609 2c2 11764 3c3 11765 lastSclsw 13996 〈“cs3 14286 〈“cs4 14287 Vtxcvtx 26933 iEdgciedg 26934 WalksOncwlkson 27531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-n0 11970 df-z 12056 df-uz 12318 df-fz 12975 df-fzo 13118 df-hash 13776 df-word 13949 df-lsw 13997 df-concat 14005 df-s1 14032 df-s2 14292 df-s3 14293 df-s4 14294 df-wlks 27533 df-wlkson 27534 |
This theorem is referenced by: 3trlond 28102 |
Copyright terms: Public domain | W3C validator |