ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmnncl GIF version

Theorem sgmnncl 15670
Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
sgmnncl ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ)

Proof of Theorem sgmnncl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 9474 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 sgmval2 15666 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴))
31, 2sylan 283 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴))
4 dvdsfi 12769 . . . . 5 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ∈ Fin)
54adantl 277 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ∈ Fin)
6 elrabi 2956 . . . . . 6 (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} → 𝑘 ∈ ℕ)
7 simpl 109 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
8 nnexpcl 10782 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑘𝐴) ∈ ℕ)
96, 7, 8syl2anr 290 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵}) → (𝑘𝐴) ∈ ℕ)
109nnzd 9576 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵}) → (𝑘𝐴) ∈ ℤ)
115, 10fsumzcl 11921 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴) ∈ ℤ)
12 nnz 9473 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
13 iddvds 12323 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵𝐵)
1412, 13syl 14 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵𝐵)
15 breq1 4086 . . . . . . . . 9 (𝑝 = 𝐵 → (𝑝𝐵𝐵𝐵))
1615rspcev 2907 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐵𝐵) → ∃𝑝 ∈ ℕ 𝑝𝐵)
1714, 16mpdan 421 . . . . . . 7 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℕ 𝑝𝐵)
18 rabn0r 3518 . . . . . . 7 (∃𝑝 ∈ ℕ 𝑝𝐵 → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ≠ ∅)
1917, 18syl 14 . . . . . 6 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ≠ ∅)
2019adantl 277 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ≠ ∅)
219nnrpd 9898 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵}) → (𝑘𝐴) ∈ ℝ+)
225, 20, 21fsumrpcl 11923 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴) ∈ ℝ+)
2322rpgt0d 9903 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴))
24 elnnz 9464 . . 3 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴) ∈ ℕ ↔ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴) ∈ ℤ ∧ 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴)))
2511, 23, 24sylanbrc 417 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝐵} (𝑘𝐴) ∈ ℕ)
263, 25eqeltrd 2306 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  wrex 2509  {crab 2512  c0 3491   class class class wbr 4083  (class class class)co 6007  Fincfn 6895  0cc0 8007   < clt 8189  cn 9118  0cn0 9377  cz 9454  cexp 10768  Σcsu 11872  cdvds 12306   σ csgm 15663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-dvds 12307  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339  df-relog 15540  df-rpcxp 15541  df-sgm 15664
This theorem is referenced by:  perfectlem1  15681  perfectlem2  15682
  Copyright terms: Public domain W3C validator