![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sgmnncl | GIF version |
Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
sgmnncl | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9343 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
2 | sgmval2 15192 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
4 | dvdsfi 12383 | . . . . 5 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ∈ Fin) | |
5 | 4 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ∈ Fin) |
6 | elrabi 2917 | . . . . . 6 ⊢ (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
7 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0) | |
8 | nnexpcl 10629 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑘↑𝐴) ∈ ℕ) | |
9 | 6, 7, 8 | syl2anr 290 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℕ) |
10 | 9 | nnzd 9444 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℤ) |
11 | 5, 10 | fsumzcl 11551 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ) |
12 | nnz 9342 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
13 | iddvds 11953 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
14 | 12, 13 | syl 14 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∥ 𝐵) |
15 | breq1 4036 | . . . . . . . . 9 ⊢ (𝑝 = 𝐵 → (𝑝 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) | |
16 | 15 | rspcev 2868 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐵) → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
17 | 14, 16 | mpdan 421 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
18 | rabn0r 3477 | . . . . . . 7 ⊢ (∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵 → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) | |
19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
20 | 19 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
21 | 9 | nnrpd 9766 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℝ+) |
22 | 5, 20, 21 | fsumrpcl 11553 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℝ+) |
23 | 22 | rpgt0d 9771 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
24 | elnnz 9333 | . . 3 ⊢ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ ↔ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ ∧ 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴))) | |
25 | 11, 23, 24 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ) |
26 | 3, 25 | eqeltrd 2273 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∃wrex 2476 {crab 2479 ∅c0 3450 class class class wbr 4033 (class class class)co 5922 Fincfn 6799 0cc0 7877 < clt 8059 ℕcn 8987 ℕ0cn0 9246 ℤcz 9323 ↑cexp 10615 Σcsu 11502 ∥ cdvds 11936 σ csgm 15189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 ax-pre-suploc 7998 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7048 df-inf 7049 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-xneg 9844 df-xadd 9845 df-ioo 9964 df-ico 9966 df-icc 9967 df-fz 10081 df-fzo 10215 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 df-fac 10803 df-bc 10825 df-ihash 10853 df-shft 10965 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 df-ef 11797 df-e 11798 df-dvds 11937 df-rest 12888 df-topgen 12907 df-psmet 14075 df-xmet 14076 df-met 14077 df-bl 14078 df-mopn 14079 df-top 14210 df-topon 14223 df-bases 14255 df-ntr 14308 df-cn 14400 df-cnp 14401 df-tx 14465 df-cncf 14783 df-limced 14868 df-dvap 14869 df-relog 15067 df-rpcxp 15068 df-sgm 15190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |