![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > fh3i | Structured version Visualization version GIF version |
Description: Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fh1.1 | ⊢ 𝐴 ∈ Cℋ |
fh1.2 | ⊢ 𝐵 ∈ Cℋ |
fh1.3 | ⊢ 𝐶 ∈ Cℋ |
fh1.4 | ⊢ 𝐴 𝐶ℋ 𝐵 |
fh1.5 | ⊢ 𝐴 𝐶ℋ 𝐶 |
Ref | Expression |
---|---|
fh3i | ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | choccli 28742 | . . . . 5 ⊢ (⊥‘𝐴) ∈ Cℋ |
3 | fh1.2 | . . . . . 6 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | choccli 28742 | . . . . 5 ⊢ (⊥‘𝐵) ∈ Cℋ |
5 | fh1.3 | . . . . . 6 ⊢ 𝐶 ∈ Cℋ | |
6 | 5 | choccli 28742 | . . . . 5 ⊢ (⊥‘𝐶) ∈ Cℋ |
7 | fh1.4 | . . . . . . 7 ⊢ 𝐴 𝐶ℋ 𝐵 | |
8 | 1, 3, 7 | cmcm3ii 29034 | . . . . . 6 ⊢ (⊥‘𝐴) 𝐶ℋ 𝐵 |
9 | 2, 3, 8 | cmcm2ii 29033 | . . . . 5 ⊢ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐵) |
10 | fh1.5 | . . . . . . 7 ⊢ 𝐴 𝐶ℋ 𝐶 | |
11 | 1, 5, 10 | cmcm3ii 29034 | . . . . . 6 ⊢ (⊥‘𝐴) 𝐶ℋ 𝐶 |
12 | 2, 5, 11 | cmcm2ii 29033 | . . . . 5 ⊢ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐶) |
13 | 2, 4, 6, 9, 12 | fh1i 29056 | . . . 4 ⊢ ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∨ℋ (⊥‘𝐶))) = (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘𝐴) ∩ (⊥‘𝐶))) |
14 | 3, 5 | chdmm1i 28912 | . . . . 5 ⊢ (⊥‘(𝐵 ∩ 𝐶)) = ((⊥‘𝐵) ∨ℋ (⊥‘𝐶)) |
15 | 14 | ineq2i 4034 | . . . 4 ⊢ ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) = ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∨ℋ (⊥‘𝐶))) |
16 | 1, 3 | chdmj1i 28916 | . . . . 5 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)) |
17 | 1, 5 | chdmj1i 28916 | . . . . 5 ⊢ (⊥‘(𝐴 ∨ℋ 𝐶)) = ((⊥‘𝐴) ∩ (⊥‘𝐶)) |
18 | 16, 17 | oveq12i 6936 | . . . 4 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) = (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘𝐴) ∩ (⊥‘𝐶))) |
19 | 13, 15, 18 | 3eqtr4ri 2813 | . . 3 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) = ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) |
20 | 1, 3 | chjcli 28892 | . . . 4 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
21 | 1, 5 | chjcli 28892 | . . . 4 ⊢ (𝐴 ∨ℋ 𝐶) ∈ Cℋ |
22 | 20, 21 | chdmm1i 28912 | . . 3 ⊢ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) |
23 | 3, 5 | chincli 28895 | . . . 4 ⊢ (𝐵 ∩ 𝐶) ∈ Cℋ |
24 | 1, 23 | chdmj1i 28916 | . . 3 ⊢ (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶))) = ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) |
25 | 19, 22, 24 | 3eqtr4i 2812 | . 2 ⊢ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶))) |
26 | 1, 23 | chjcli 28892 | . . 3 ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) ∈ Cℋ |
27 | 20, 21 | chincli 28895 | . . 3 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) ∈ Cℋ |
28 | 26, 27 | chcon3i 28901 | . 2 ⊢ ((𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) ↔ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶)))) |
29 | 25, 28 | mpbir 223 | 1 ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ∩ cin 3791 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 Cℋ cch 28362 ⊥cort 28363 ∨ℋ chj 28366 𝐶ℋ ccm 28369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cc 9594 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 ax-hilex 28432 ax-hfvadd 28433 ax-hvcom 28434 ax-hvass 28435 ax-hv0cl 28436 ax-hvaddid 28437 ax-hfvmul 28438 ax-hvmulid 28439 ax-hvmulass 28440 ax-hvdistr1 28441 ax-hvdistr2 28442 ax-hvmul0 28443 ax-hfi 28512 ax-his1 28515 ax-his2 28516 ax-his3 28517 ax-his4 28518 ax-hcompl 28635 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-omul 7850 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-acn 9103 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-ico 12497 df-icc 12498 df-fz 12648 df-fzo 12789 df-fl 12916 df-seq 13124 df-exp 13183 df-hash 13440 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-clim 14631 df-rlim 14632 df-sum 14829 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-fbas 20143 df-fg 20144 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cld 21235 df-ntr 21236 df-cls 21237 df-nei 21314 df-cn 21443 df-cnp 21444 df-lm 21445 df-haus 21531 df-tx 21778 df-hmeo 21971 df-fil 22062 df-fm 22154 df-flim 22155 df-flf 22156 df-xms 22537 df-ms 22538 df-tms 22539 df-cfil 23465 df-cau 23466 df-cmet 23467 df-grpo 27924 df-gid 27925 df-ginv 27926 df-gdiv 27927 df-ablo 27976 df-vc 27990 df-nv 28023 df-va 28026 df-ba 28027 df-sm 28028 df-0v 28029 df-vs 28030 df-nmcv 28031 df-ims 28032 df-dip 28132 df-ssp 28153 df-ph 28244 df-cbn 28295 df-hnorm 28401 df-hba 28402 df-hvsub 28404 df-hlim 28405 df-hcau 28406 df-sh 28640 df-ch 28654 df-oc 28685 df-ch0 28686 df-shs 28743 df-chj 28745 df-cm 29018 |
This theorem is referenced by: mayetes3i 29164 |
Copyright terms: Public domain | W3C validator |