| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > fh3i | Structured version Visualization version GIF version | ||
| Description: Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fh1.1 | ⊢ 𝐴 ∈ Cℋ |
| fh1.2 | ⊢ 𝐵 ∈ Cℋ |
| fh1.3 | ⊢ 𝐶 ∈ Cℋ |
| fh1.4 | ⊢ 𝐴 𝐶ℋ 𝐵 |
| fh1.5 | ⊢ 𝐴 𝐶ℋ 𝐶 |
| Ref | Expression |
|---|---|
| fh3i | ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fh1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | choccli 31222 | . . . . 5 ⊢ (⊥‘𝐴) ∈ Cℋ |
| 3 | fh1.2 | . . . . . 6 ⊢ 𝐵 ∈ Cℋ | |
| 4 | 3 | choccli 31222 | . . . . 5 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 5 | fh1.3 | . . . . . 6 ⊢ 𝐶 ∈ Cℋ | |
| 6 | 5 | choccli 31222 | . . . . 5 ⊢ (⊥‘𝐶) ∈ Cℋ |
| 7 | fh1.4 | . . . . . . 7 ⊢ 𝐴 𝐶ℋ 𝐵 | |
| 8 | 1, 3, 7 | cmcm3ii 31514 | . . . . . 6 ⊢ (⊥‘𝐴) 𝐶ℋ 𝐵 |
| 9 | 2, 3, 8 | cmcm2ii 31513 | . . . . 5 ⊢ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐵) |
| 10 | fh1.5 | . . . . . . 7 ⊢ 𝐴 𝐶ℋ 𝐶 | |
| 11 | 1, 5, 10 | cmcm3ii 31514 | . . . . . 6 ⊢ (⊥‘𝐴) 𝐶ℋ 𝐶 |
| 12 | 2, 5, 11 | cmcm2ii 31513 | . . . . 5 ⊢ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐶) |
| 13 | 2, 4, 6, 9, 12 | fh1i 31536 | . . . 4 ⊢ ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∨ℋ (⊥‘𝐶))) = (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘𝐴) ∩ (⊥‘𝐶))) |
| 14 | 3, 5 | chdmm1i 31392 | . . . . 5 ⊢ (⊥‘(𝐵 ∩ 𝐶)) = ((⊥‘𝐵) ∨ℋ (⊥‘𝐶)) |
| 15 | 14 | ineq2i 4190 | . . . 4 ⊢ ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) = ((⊥‘𝐴) ∩ ((⊥‘𝐵) ∨ℋ (⊥‘𝐶))) |
| 16 | 1, 3 | chdmj1i 31396 | . . . . 5 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)) |
| 17 | 1, 5 | chdmj1i 31396 | . . . . 5 ⊢ (⊥‘(𝐴 ∨ℋ 𝐶)) = ((⊥‘𝐴) ∩ (⊥‘𝐶)) |
| 18 | 16, 17 | oveq12i 7412 | . . . 4 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) = (((⊥‘𝐴) ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘𝐴) ∩ (⊥‘𝐶))) |
| 19 | 13, 15, 18 | 3eqtr4ri 2768 | . . 3 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) = ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) |
| 20 | 1, 3 | chjcli 31372 | . . . 4 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
| 21 | 1, 5 | chjcli 31372 | . . . 4 ⊢ (𝐴 ∨ℋ 𝐶) ∈ Cℋ |
| 22 | 20, 21 | chdmm1i 31392 | . . 3 ⊢ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = ((⊥‘(𝐴 ∨ℋ 𝐵)) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐶))) |
| 23 | 3, 5 | chincli 31375 | . . . 4 ⊢ (𝐵 ∩ 𝐶) ∈ Cℋ |
| 24 | 1, 23 | chdmj1i 31396 | . . 3 ⊢ (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶))) = ((⊥‘𝐴) ∩ (⊥‘(𝐵 ∩ 𝐶))) |
| 25 | 19, 22, 24 | 3eqtr4i 2767 | . 2 ⊢ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶))) |
| 26 | 1, 23 | chjcli 31372 | . . 3 ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) ∈ Cℋ |
| 27 | 20, 21 | chincli 31375 | . . 3 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) ∈ Cℋ |
| 28 | 26, 27 | chcon3i 31381 | . 2 ⊢ ((𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) ↔ (⊥‘((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶))) = (⊥‘(𝐴 ∨ℋ (𝐵 ∩ 𝐶)))) |
| 29 | 25, 28 | mpbir 231 | 1 ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∩ cin 3923 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 Cℋ cch 30844 ⊥cort 30845 ∨ℋ chj 30848 𝐶ℋ ccm 30851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-cc 10442 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 ax-mulf 11202 ax-hilex 30914 ax-hfvadd 30915 ax-hvcom 30916 ax-hvass 30917 ax-hv0cl 30918 ax-hvaddid 30919 ax-hfvmul 30920 ax-hvmulid 30921 ax-hvmulass 30922 ax-hvdistr1 30923 ax-hvdistr2 30924 ax-hvmul0 30925 ax-hfi 30994 ax-his1 30997 ax-his2 30998 ax-his3 30999 ax-his4 31000 ax-hcompl 31117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-oadd 8479 df-omul 8480 df-er 8714 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-fi 9418 df-sup 9449 df-inf 9450 df-oi 9517 df-card 9946 df-acn 9949 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xadd 13122 df-xmul 13123 df-ioo 13358 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13662 df-fl 13799 df-seq 14010 df-exp 14070 df-hash 14339 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-clim 15493 df-rlim 15494 df-sum 15692 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-mulg 19038 df-cntz 19287 df-cmn 19750 df-psmet 21294 df-xmet 21295 df-met 21296 df-bl 21297 df-mopn 21298 df-fbas 21299 df-fg 21300 df-cnfld 21303 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-cn 23152 df-cnp 23153 df-lm 23154 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24246 df-ms 24247 df-tms 24248 df-cfil 25194 df-cau 25195 df-cmet 25196 df-grpo 30408 df-gid 30409 df-ginv 30410 df-gdiv 30411 df-ablo 30460 df-vc 30474 df-nv 30507 df-va 30510 df-ba 30511 df-sm 30512 df-0v 30513 df-vs 30514 df-nmcv 30515 df-ims 30516 df-dip 30616 df-ssp 30637 df-ph 30728 df-cbn 30778 df-hnorm 30883 df-hba 30884 df-hvsub 30886 df-hlim 30887 df-hcau 30888 df-sh 31122 df-ch 31136 df-oc 31167 df-ch0 31168 df-shs 31223 df-chj 31225 df-cm 31498 |
| This theorem is referenced by: mayetes3i 31644 |
| Copyright terms: Public domain | W3C validator |