MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1iidm Structured version   Visualization version   GIF version

Theorem smndex1iidm 18926
Description: The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
Assertion
Ref Expression
smndex1iidm (𝐼𝐼) = 𝐼
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐼(𝑥)   𝑀(𝑥)

Proof of Theorem smndex1iidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12532 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
2 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
3 nnrp 13043 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42, 3ax-mp 5 . . . . 5 𝑁 ∈ ℝ+
5 modabs2 13941 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁))
61, 4, 5sylancl 586 . . . 4 (𝑦 ∈ ℕ0 → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁))
76eqcomd 2740 . . 3 (𝑦 ∈ ℕ0 → (𝑦 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁))
87mpteq2ia 5250 . 2 (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁))
9 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
10 oveq1 7437 . . . 4 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
1110cbvmptv 5260 . . 3 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁))
129, 11eqtri 2762 . 2 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁))
13 nn0z 12635 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
1413anim2i 617 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ))
1514ancomd 461 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ))
16 zmodcl 13927 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 mod 𝑁) ∈ ℕ0)
1715, 16syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 mod 𝑁) ∈ ℕ0)
1812a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)))
199a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)))
20 oveq1 7437 . . . 4 (𝑥 = (𝑦 mod 𝑁) → (𝑥 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁))
2117, 18, 19, 20fmptco 7148 . . 3 (𝑁 ∈ ℕ → (𝐼𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁)))
222, 21ax-mp 5 . 2 (𝐼𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁))
238, 12, 223eqtr4ri 2773 1 (𝐼𝐼) = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  cmpt 5230  ccom 5692  cfv 6562  (class class class)co 7430  cr 11151  cn 12263  0cn0 12523  cz 12610  +crp 13031   mod cmo 13905  EndoFMndcefmnd 18893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906
This theorem is referenced by:  smndex1mgm  18932  smndex1mndlem  18934
  Copyright terms: Public domain W3C validator