![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1iidm | Structured version Visualization version GIF version |
Description: The modulo function πΌ is idempotent. (Contributed by AV, 12-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
Ref | Expression |
---|---|
smndex1iidm | β’ (πΌ β πΌ) = πΌ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12497 | . . . . 5 β’ (π¦ β β0 β π¦ β β) | |
2 | smndex1ibas.n | . . . . . 6 β’ π β β | |
3 | nnrp 13003 | . . . . . 6 β’ (π β β β π β β+) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 β’ π β β+ |
5 | modabs2 13888 | . . . . 5 β’ ((π¦ β β β§ π β β+) β ((π¦ mod π) mod π) = (π¦ mod π)) | |
6 | 1, 4, 5 | sylancl 585 | . . . 4 β’ (π¦ β β0 β ((π¦ mod π) mod π) = (π¦ mod π)) |
7 | 6 | eqcomd 2733 | . . 3 β’ (π¦ β β0 β (π¦ mod π) = ((π¦ mod π) mod π)) |
8 | 7 | mpteq2ia 5245 | . 2 β’ (π¦ β β0 β¦ (π¦ mod π)) = (π¦ β β0 β¦ ((π¦ mod π) mod π)) |
9 | smndex1ibas.i | . . 3 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
10 | oveq1 7421 | . . . 4 β’ (π₯ = π¦ β (π₯ mod π) = (π¦ mod π)) | |
11 | 10 | cbvmptv 5255 | . . 3 β’ (π₯ β β0 β¦ (π₯ mod π)) = (π¦ β β0 β¦ (π¦ mod π)) |
12 | 9, 11 | eqtri 2755 | . 2 β’ πΌ = (π¦ β β0 β¦ (π¦ mod π)) |
13 | nn0z 12599 | . . . . . . 7 β’ (π¦ β β0 β π¦ β β€) | |
14 | 13 | anim2i 616 | . . . . . 6 β’ ((π β β β§ π¦ β β0) β (π β β β§ π¦ β β€)) |
15 | 14 | ancomd 461 | . . . . 5 β’ ((π β β β§ π¦ β β0) β (π¦ β β€ β§ π β β)) |
16 | zmodcl 13874 | . . . . 5 β’ ((π¦ β β€ β§ π β β) β (π¦ mod π) β β0) | |
17 | 15, 16 | syl 17 | . . . 4 β’ ((π β β β§ π¦ β β0) β (π¦ mod π) β β0) |
18 | 12 | a1i 11 | . . . 4 β’ (π β β β πΌ = (π¦ β β0 β¦ (π¦ mod π))) |
19 | 9 | a1i 11 | . . . 4 β’ (π β β β πΌ = (π₯ β β0 β¦ (π₯ mod π))) |
20 | oveq1 7421 | . . . 4 β’ (π₯ = (π¦ mod π) β (π₯ mod π) = ((π¦ mod π) mod π)) | |
21 | 17, 18, 19, 20 | fmptco 7132 | . . 3 β’ (π β β β (πΌ β πΌ) = (π¦ β β0 β¦ ((π¦ mod π) mod π))) |
22 | 2, 21 | ax-mp 5 | . 2 β’ (πΌ β πΌ) = (π¦ β β0 β¦ ((π¦ mod π) mod π)) |
23 | 8, 12, 22 | 3eqtr4ri 2766 | 1 β’ (πΌ β πΌ) = πΌ |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1534 β wcel 2099 β¦ cmpt 5225 β ccom 5676 βcfv 6542 (class class class)co 7414 βcr 11123 βcn 12228 β0cn0 12488 β€cz 12574 β+crp 12992 mod cmo 13852 EndoFMndcefmnd 18805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fl 13775 df-mod 13853 |
This theorem is referenced by: smndex1mgm 18844 smndex1mndlem 18846 |
Copyright terms: Public domain | W3C validator |