| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1iidm | Structured version Visualization version GIF version | ||
| Description: The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| Ref | Expression |
|---|---|
| smndex1iidm | ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12390 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ) | |
| 2 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 3 | nnrp 12902 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 𝑁 ∈ ℝ+ |
| 5 | modabs2 13809 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁)) | |
| 6 | 1, 4, 5 | sylancl 586 | . . . 4 ⊢ (𝑦 ∈ ℕ0 → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁)) |
| 7 | 6 | eqcomd 2737 | . . 3 ⊢ (𝑦 ∈ ℕ0 → (𝑦 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁)) |
| 8 | 7 | mpteq2ia 5184 | . 2 ⊢ (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁)) |
| 9 | smndex1ibas.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 10 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁)) | |
| 11 | 10 | cbvmptv 5193 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)) |
| 12 | 9, 11 | eqtri 2754 | . 2 ⊢ 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)) |
| 13 | nn0z 12493 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
| 14 | 13 | anim2i 617 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ)) |
| 15 | 14 | ancomd 461 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ)) |
| 16 | zmodcl 13795 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 mod 𝑁) ∈ ℕ0) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 mod 𝑁) ∈ ℕ0) |
| 18 | 12 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁))) |
| 19 | 9 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))) |
| 20 | oveq1 7353 | . . . 4 ⊢ (𝑥 = (𝑦 mod 𝑁) → (𝑥 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁)) | |
| 21 | 17, 18, 19, 20 | fmptco 7062 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐼 ∘ 𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁))) |
| 22 | 2, 21 | ax-mp 5 | . 2 ⊢ (𝐼 ∘ 𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁)) |
| 23 | 8, 12, 22 | 3eqtr4ri 2765 | 1 ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ℝ+crp 12890 mod cmo 13773 EndoFMndcefmnd 18776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 |
| This theorem is referenced by: smndex1mgm 18815 smndex1mndlem 18817 |
| Copyright terms: Public domain | W3C validator |