MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1iidm Structured version   Visualization version   GIF version

Theorem smndex1iidm 18775
Description: The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
Assertion
Ref Expression
smndex1iidm (𝐼𝐼) = 𝐼
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐼(𝑥)   𝑀(𝑥)

Proof of Theorem smndex1iidm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12393 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
2 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
3 nnrp 12905 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42, 3ax-mp 5 . . . . 5 𝑁 ∈ ℝ+
5 modabs2 13809 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁))
61, 4, 5sylancl 586 . . . 4 (𝑦 ∈ ℕ0 → ((𝑦 mod 𝑁) mod 𝑁) = (𝑦 mod 𝑁))
76eqcomd 2735 . . 3 (𝑦 ∈ ℕ0 → (𝑦 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁))
87mpteq2ia 5187 . 2 (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁))
9 smndex1ibas.i . . 3 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
10 oveq1 7356 . . . 4 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
1110cbvmptv 5196 . . 3 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁))
129, 11eqtri 2752 . 2 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁))
13 nn0z 12496 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
1413anim2i 617 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ))
1514ancomd 461 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ))
16 zmodcl 13795 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 mod 𝑁) ∈ ℕ0)
1715, 16syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (𝑦 mod 𝑁) ∈ ℕ0)
1812a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝐼 = (𝑦 ∈ ℕ0 ↦ (𝑦 mod 𝑁)))
199a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)))
20 oveq1 7356 . . . 4 (𝑥 = (𝑦 mod 𝑁) → (𝑥 mod 𝑁) = ((𝑦 mod 𝑁) mod 𝑁))
2117, 18, 19, 20fmptco 7063 . . 3 (𝑁 ∈ ℕ → (𝐼𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁)))
222, 21ax-mp 5 . 2 (𝐼𝐼) = (𝑦 ∈ ℕ0 ↦ ((𝑦 mod 𝑁) mod 𝑁))
238, 12, 223eqtr4ri 2763 1 (𝐼𝐼) = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cr 11008  cn 12128  0cn0 12384  cz 12471  +crp 12893   mod cmo 13773  EndoFMndcefmnd 18742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774
This theorem is referenced by:  smndex1mgm  18781  smndex1mndlem  18783
  Copyright terms: Public domain W3C validator