![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3wlkdlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for 3wlkd 29211. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
3wlkd.p | ⊢ 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩ |
3wlkd.f | ⊢ 𝐹 = ⟨“𝐽𝐾𝐿”⟩ |
3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
Ref | Expression |
---|---|
3wlkdlem3 | ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.s | . 2 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
2 | 3wlkd.p | . . . . . 6 ⊢ 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩ | |
3 | 2 | fveq1i 6863 | . . . . 5 ⊢ (𝑃‘0) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0) |
4 | s4fv0 14811 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴) | |
5 | 3, 4 | eqtrid 2783 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
6 | 2 | fveq1i 6863 | . . . . 5 ⊢ (𝑃‘1) = (⟨“𝐴𝐵𝐶𝐷”⟩‘1) |
7 | s4fv1 14812 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵) | |
8 | 6, 7 | eqtrid 2783 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑃‘1) = 𝐵) |
9 | 5, 8 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) |
10 | 2 | fveq1i 6863 | . . . . 5 ⊢ (𝑃‘2) = (⟨“𝐴𝐵𝐶𝐷”⟩‘2) |
11 | s4fv2 14813 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶) | |
12 | 10, 11 | eqtrid 2783 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑃‘2) = 𝐶) |
13 | 2 | fveq1i 6863 | . . . . 5 ⊢ (𝑃‘3) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3) |
14 | s4fv3 14814 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷) | |
15 | 13, 14 | eqtrid 2783 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (𝑃‘3) = 𝐷) |
16 | 12, 15 | anim12i 613 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) |
17 | 9, 16 | anim12i 613 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6516 0cc0 11075 1c1 11076 2c2 12232 3c3 12233 ⟨“cs3 14758 ⟨“cs4 14759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-int 4928 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-1st 7941 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-er 8670 df-en 8906 df-dom 8907 df-sdom 8908 df-fin 8909 df-card 9899 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-nn 12178 df-2 12240 df-3 12241 df-n0 12438 df-z 12524 df-uz 12788 df-fz 13450 df-fzo 13593 df-hash 14256 df-word 14430 df-concat 14486 df-s1 14511 df-s2 14764 df-s3 14765 df-s4 14766 |
This theorem is referenced by: 3wlkdlem4 29203 3wlkdlem5 29204 3pthdlem1 29205 3wlkdlem6 29206 3wlkdlem10 29210 3wlkond 29212 |
Copyright terms: Public domain | W3C validator |