MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem3 Structured version   Visualization version   GIF version

Theorem 3wlkdlem3 27943
Description: Lemma 3 for 3wlkd 27952. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))

Proof of Theorem 3wlkdlem3
StepHypRef Expression
1 3wlkd.s . 2 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . . . 6 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
32fveq1i 6674 . . . . 5 (𝑃‘0) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0)
4 s4fv0 14260 . . . . 5 (𝐴𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
53, 4syl5eq 2871 . . . 4 (𝐴𝑉 → (𝑃‘0) = 𝐴)
62fveq1i 6674 . . . . 5 (𝑃‘1) = (⟨“𝐴𝐵𝐶𝐷”⟩‘1)
7 s4fv1 14261 . . . . 5 (𝐵𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
86, 7syl5eq 2871 . . . 4 (𝐵𝑉 → (𝑃‘1) = 𝐵)
95, 8anim12i 614 . . 3 ((𝐴𝑉𝐵𝑉) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵))
102fveq1i 6674 . . . . 5 (𝑃‘2) = (⟨“𝐴𝐵𝐶𝐷”⟩‘2)
11 s4fv2 14262 . . . . 5 (𝐶𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
1210, 11syl5eq 2871 . . . 4 (𝐶𝑉 → (𝑃‘2) = 𝐶)
132fveq1i 6674 . . . . 5 (𝑃‘3) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3)
14 s4fv3 14263 . . . . 5 (𝐷𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
1513, 14syl5eq 2871 . . . 4 (𝐷𝑉 → (𝑃‘3) = 𝐷)
1612, 15anim12i 614 . . 3 ((𝐶𝑉𝐷𝑉) → ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))
179, 16anim12i 614 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
181, 17syl 17 1 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6358  0cc0 10540  1c1 10541  2c2 11695  3c3 11696  ⟨“cs3 14207  ⟨“cs4 14208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-s4 14215
This theorem is referenced by:  3wlkdlem4  27944  3wlkdlem5  27945  3pthdlem1  27946  3wlkdlem6  27947  3wlkdlem10  27951  3wlkond  27953
  Copyright terms: Public domain W3C validator