MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem3 Structured version   Visualization version   GIF version

Theorem 3wlkdlem3 30190
Description: Lemma 3 for 3wlkd 30199. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))

Proof of Theorem 3wlkdlem3
StepHypRef Expression
1 3wlkd.s . 2 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . . . 6 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
32fveq1i 6908 . . . . 5 (𝑃‘0) = (⟨“𝐴𝐵𝐶𝐷”⟩‘0)
4 s4fv0 14931 . . . . 5 (𝐴𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴)
53, 4eqtrid 2787 . . . 4 (𝐴𝑉 → (𝑃‘0) = 𝐴)
62fveq1i 6908 . . . . 5 (𝑃‘1) = (⟨“𝐴𝐵𝐶𝐷”⟩‘1)
7 s4fv1 14932 . . . . 5 (𝐵𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵)
86, 7eqtrid 2787 . . . 4 (𝐵𝑉 → (𝑃‘1) = 𝐵)
95, 8anim12i 613 . . 3 ((𝐴𝑉𝐵𝑉) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵))
102fveq1i 6908 . . . . 5 (𝑃‘2) = (⟨“𝐴𝐵𝐶𝐷”⟩‘2)
11 s4fv2 14933 . . . . 5 (𝐶𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶)
1210, 11eqtrid 2787 . . . 4 (𝐶𝑉 → (𝑃‘2) = 𝐶)
132fveq1i 6908 . . . . 5 (𝑃‘3) = (⟨“𝐴𝐵𝐶𝐷”⟩‘3)
14 s4fv3 14934 . . . . 5 (𝐷𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷)
1513, 14eqtrid 2787 . . . 4 (𝐷𝑉 → (𝑃‘3) = 𝐷)
1612, 15anim12i 613 . . 3 ((𝐶𝑉𝐷𝑉) → ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))
179, 16anim12i 613 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
181, 17syl 17 1 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  0cc0 11153  1c1 11154  2c2 12319  3c3 12320  ⟨“cs3 14878  ⟨“cs4 14879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-s4 14886
This theorem is referenced by:  3wlkdlem4  30191  3wlkdlem5  30192  3pthdlem1  30193  3wlkdlem6  30194  3wlkdlem10  30198  3wlkond  30200
  Copyright terms: Public domain W3C validator