MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absreim Structured version   Visualization version   GIF version

Theorem absreim 14647
Description: Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
absreim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2))))

Proof of Theorem absreim
StepHypRef Expression
1 recn 10621 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 10590 . . . . . 6 i ∈ ℂ
3 recn 10621 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 10615 . . . . . 6 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 589 . . . . 5 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 10613 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 597 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 abscl 14632 . . . 4 ((𝐴 + (i · 𝐵)) ∈ ℂ → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
10 absge0 14641 . . . 4 ((𝐴 + (i · 𝐵)) ∈ ℂ → 0 ≤ (abs‘(𝐴 + (i · 𝐵))))
117, 10syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (abs‘(𝐴 + (i · 𝐵))))
12 sqrtsq 14623 . . 3 (((abs‘(𝐴 + (i · 𝐵))) ∈ ℝ ∧ 0 ≤ (abs‘(𝐴 + (i · 𝐵)))) → (√‘((abs‘(𝐴 + (i · 𝐵)))↑2)) = (abs‘(𝐴 + (i · 𝐵))))
139, 11, 12syl2anc 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (√‘((abs‘(𝐴 + (i · 𝐵)))↑2)) = (abs‘(𝐴 + (i · 𝐵))))
14 absreimsq 14646 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
1514fveq2d 6668 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (√‘((abs‘(𝐴 + (i · 𝐵)))↑2)) = (√‘((𝐴↑2) + (𝐵↑2))))
1613, 15eqtr3d 2858 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  ici 10533   + caddc 10534   · cmul 10536  cle 10670  2c2 11686  cexp 13423  csqrt 14586  abscabs 14587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by:  absefi  15543  ipidsq  28481  ftc1anclem3  34963
  Copyright terms: Public domain W3C validator