| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absefi | Structured version Visualization version GIF version | ||
| Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
| Ref | Expression |
|---|---|
| absefi | ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 11164 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | efival 16126 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) |
| 4 | 3 | fveq2d 6864 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = (abs‘((cos‘𝐴) + (i · (sin‘𝐴))))) |
| 5 | recoscl 16115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
| 6 | resincl 16114 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
| 7 | absreim 15265 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) |
| 9 | 5 | resqcld 14096 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
| 10 | 9 | recnd 11208 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℂ) |
| 11 | 6 | resqcld 14096 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
| 12 | 11 | recnd 11208 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℂ) |
| 13 | 10, 12 | addcomd 11382 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 14 | sincossq 16150 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
| 15 | 1, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| 16 | 13, 15 | eqtrd 2765 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1) |
| 17 | 16 | fveq2d 6864 | . . . 4 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = (√‘1)) |
| 18 | sqrt1 15243 | . . . 4 ⊢ (√‘1) = 1 | |
| 19 | 17, 18 | eqtrdi 2781 | . . 3 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = 1) |
| 20 | 8, 19 | eqtrd 2765 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = 1) |
| 21 | 4, 20 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 1c1 11075 ici 11076 + caddc 11077 · cmul 11079 2c2 12242 ↑cexp 14032 √csqrt 15205 abscabs 15206 expce 16033 sincsin 16035 cosccos 16036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 |
| This theorem is referenced by: absef 16171 efieq1re 16173 pige3ALT 26435 efif1olem4 26460 efifo 26462 cos9thpinconstrlem1 33785 |
| Copyright terms: Public domain | W3C validator |