| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absefi | Structured version Visualization version GIF version | ||
| Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
| Ref | Expression |
|---|---|
| absefi | ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 11227 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | efival 16170 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) |
| 4 | 3 | fveq2d 6890 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = (abs‘((cos‘𝐴) + (i · (sin‘𝐴))))) |
| 5 | recoscl 16159 | . . . 4 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
| 6 | resincl 16158 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
| 7 | absreim 15314 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) |
| 9 | 5 | resqcld 14147 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
| 10 | 9 | recnd 11271 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℂ) |
| 11 | 6 | resqcld 14147 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
| 12 | 11 | recnd 11271 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℂ) |
| 13 | 10, 12 | addcomd 11445 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 14 | sincossq 16194 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
| 15 | 1, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| 16 | 13, 15 | eqtrd 2769 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1) |
| 17 | 16 | fveq2d 6890 | . . . 4 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = (√‘1)) |
| 18 | sqrt1 15292 | . . . 4 ⊢ (√‘1) = 1 | |
| 19 | 17, 18 | eqtrdi 2785 | . . 3 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = 1) |
| 20 | 8, 19 | eqtrd 2769 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = 1) |
| 21 | 4, 20 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 1c1 11138 ici 11139 + caddc 11140 · cmul 11142 2c2 12303 ↑cexp 14084 √csqrt 15254 abscabs 15255 expce 16079 sincsin 16081 cosccos 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-ico 13375 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-shft 15088 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-ef 16085 df-sin 16087 df-cos 16088 |
| This theorem is referenced by: absef 16215 efieq1re 16217 pige3ALT 26498 efif1olem4 26523 efifo 26525 |
| Copyright terms: Public domain | W3C validator |