Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absefi | Structured version Visualization version GIF version |
Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
Ref | Expression |
---|---|
absefi | ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11040 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | efival 15937 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) |
4 | 3 | fveq2d 6815 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = (abs‘((cos‘𝐴) + (i · (sin‘𝐴))))) |
5 | recoscl 15926 | . . . 4 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
6 | resincl 15925 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
7 | absreim 15081 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) | |
8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))) |
9 | 5 | resqcld 14044 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
10 | 9 | recnd 11082 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℂ) |
11 | 6 | resqcld 14044 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
12 | 11 | recnd 11082 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℂ) |
13 | 10, 12 | addcomd 11256 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
14 | sincossq 15961 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
15 | 1, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
16 | 13, 15 | eqtrd 2776 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1) |
17 | 16 | fveq2d 6815 | . . . 4 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = (√‘1)) |
18 | sqrt1 15059 | . . . 4 ⊢ (√‘1) = 1 | |
19 | 17, 18 | eqtrdi 2792 | . . 3 ⊢ (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = 1) |
20 | 8, 19 | eqtrd 2776 | . 2 ⊢ (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = 1) |
21 | 4, 20 | eqtrd 2776 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 ℝcr 10949 1c1 10951 ici 10952 + caddc 10953 · cmul 10955 2c2 12107 ↑cexp 13861 √csqrt 15020 abscabs 15021 expce 15847 sincsin 15849 cosccos 15850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-ico 13164 df-fz 13319 df-fzo 13462 df-fl 13591 df-seq 13801 df-exp 13862 df-fac 14067 df-bc 14096 df-hash 14124 df-shft 14854 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-limsup 15256 df-clim 15273 df-rlim 15274 df-sum 15474 df-ef 15853 df-sin 15855 df-cos 15856 |
This theorem is referenced by: absef 15982 efieq1re 15984 pige3ALT 25756 efif1olem4 25781 efifo 25783 |
Copyright terms: Public domain | W3C validator |