Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abv1 | Structured version Visualization version GIF version |
Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv1.p | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
abv1 | ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ 𝐴) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | abv1.p | . . 3 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | drngunz 19807 | . 2 ⊢ (𝑅 ∈ DivRing → 1 ≠ (0g‘𝑅)) |
5 | abv0.a | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
6 | 5, 3, 2 | abv1z 19893 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ (0g‘𝑅)) → (𝐹‘ 1 ) = 1) |
7 | 1, 4, 6 | syl2anr 600 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ‘cfv 6398 1c1 10755 0gc0g 16969 1rcur 19541 DivRingcdr 19792 AbsValcabv 19877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-tpos 7989 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-ico 12966 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-plusg 16840 df-mulr 16841 df-0g 16971 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-grp 18393 df-mgp 19530 df-ur 19542 df-ring 19589 df-oppr 19666 df-dvdsr 19684 df-unit 19685 df-drng 19794 df-abv 19878 |
This theorem is referenced by: abvrec 19897 ostthlem1 26532 |
Copyright terms: Public domain | W3C validator |