MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1i Structured version   Visualization version   GIF version

Theorem addid1i 10816
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 10809 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  (class class class)co 7148  cc 10524  0cc0 10526   + caddc 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-ltxr 10669
This theorem is referenced by:  1p0e1  11750  9p1e10  12089  num0u  12098  numnncl2  12110  decrmanc  12144  decaddi  12147  decaddci  12148  decmul1  12151  decmulnc  12154  fsumrelem  15152  bpoly4  15403  demoivreALT  15544  decexp2  16401  decsplit0  16407  37prm  16444  43prm  16445  139prm  16447  163prm  16448  317prm  16449  631prm  16450  1259lem2  16455  1259lem3  16456  1259lem4  16457  1259lem5  16458  2503lem1  16460  2503lem2  16461  2503lem3  16462  4001lem1  16464  4001lem2  16465  4001lem3  16466  4001lem4  16467  sinhalfpilem  24964  efipi  24974  asin1  25385  log2ublem3  25440  log2ub  25441  emcllem6  25492  lgam1  25555  ip2i  28519  pythi  28541  normlem6  28806  normpythi  28833  normpari  28845  pjneli  29414  dp20u  30468  1mhdrd  30506  ballotth  31681  hgt750lemd  31805  hgt750lem2  31809  dirkertrigeqlem3  42251  fourierdlem103  42360  fourierdlem104  42361  fouriersw  42382  257prm  43555  fmtno4nprmfac193  43568  fmtno5faclem3  43575  fmtno5fac  43576  139prmALT  43591  127prm  43595  m11nprm  43598
  Copyright terms: Public domain W3C validator