Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addid1i | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 11060 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 0cc0 10777 + caddc 10780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-po 5493 df-so 5494 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 |
This theorem is referenced by: 1p0e1 12002 9p1e10 12343 num0u 12352 numnncl2 12364 decrmanc 12398 decaddi 12401 decaddci 12402 decmul1 12405 decmulnc 12408 fsumrelem 15422 bpoly4 15672 demoivreALT 15813 decexp2 16679 decsplit0 16685 37prm 16725 43prm 16726 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem1 16741 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 sinhalfpilem 25500 efipi 25510 asin1 25924 log2ublem3 25978 log2ub 25979 emcllem6 26030 lgam1 26093 ip2i 29066 pythi 29088 normlem6 29353 normpythi 29380 normpari 29392 pjneli 29961 dp20u 31029 1mhdrd 31067 ballotth 32379 hgt750lemd 32503 hgt750lem2 32507 420gcd8e4 39921 60lcm7e420 39925 420lcm8e840 39926 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 dirkertrigeqlem3 43504 fourierdlem103 43613 fourierdlem104 43614 fouriersw 43635 257prm 44874 fmtno4nprmfac193 44887 fmtno5faclem3 44894 fmtno5fac 44895 139prmALT 44909 127prm 44912 m11nprm 44914 |
Copyright terms: Public domain | W3C validator |