Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addid1i | Structured version Visualization version GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 10871 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 (class class class)co 7156 ℂcc 10586 0cc0 10588 + caddc 10591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-ltxr 10731 |
This theorem is referenced by: 1p0e1 11811 9p1e10 12152 num0u 12161 numnncl2 12173 decrmanc 12207 decaddi 12210 decaddci 12211 decmul1 12214 decmulnc 12217 fsumrelem 15223 bpoly4 15474 demoivreALT 15615 decexp2 16479 decsplit0 16485 37prm 16525 43prm 16526 139prm 16528 163prm 16529 317prm 16530 631prm 16531 1259lem2 16536 1259lem3 16537 1259lem4 16538 1259lem5 16539 2503lem1 16541 2503lem2 16542 2503lem3 16543 4001lem1 16545 4001lem2 16546 4001lem3 16547 4001lem4 16548 sinhalfpilem 25168 efipi 25178 asin1 25592 log2ublem3 25646 log2ub 25647 emcllem6 25698 lgam1 25761 ip2i 28723 pythi 28745 normlem6 29010 normpythi 29037 normpari 29049 pjneli 29618 dp20u 30688 1mhdrd 30726 ballotth 32035 hgt750lemd 32159 hgt750lem2 32163 420gcd8e4 39607 60lcm7e420 39611 420lcm8e840 39612 3lexlogpow5ineq1 39655 3lexlogpow5ineq5 39661 dirkertrigeqlem3 43143 fourierdlem103 43252 fourierdlem104 43253 fouriersw 43274 257prm 44495 fmtno4nprmfac193 44508 fmtno5faclem3 44515 fmtno5fac 44516 139prmALT 44530 127prm 44533 m11nprm 44535 |
Copyright terms: Public domain | W3C validator |