![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgcgrcom | Structured version Visualization version GIF version |
Description: Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tgcgrxfr.p | β’ π = (BaseβπΊ) |
tgcgrxfr.m | β’ β = (distβπΊ) |
tgcgrxfr.i | β’ πΌ = (ItvβπΊ) |
tgcgrxfr.r | β’ βΌ = (cgrGβπΊ) |
tgcgrxfr.g | β’ (π β πΊ β TarskiG) |
tgbtwnxfr.a | β’ (π β π΄ β π) |
tgbtwnxfr.b | β’ (π β π΅ β π) |
tgbtwnxfr.c | β’ (π β πΆ β π) |
tgbtwnxfr.d | β’ (π β π· β π) |
tgbtwnxfr.e | β’ (π β πΈ β π) |
tgbtwnxfr.f | β’ (π β πΉ β π) |
tgbtwnxfr.2 | β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) |
Ref | Expression |
---|---|
trgcgrcom | β’ (π β β¨βπ·πΈπΉββ© βΌ β¨βπ΄π΅πΆββ©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | . 2 β’ π = (BaseβπΊ) | |
2 | tgcgrxfr.m | . 2 β’ β = (distβπΊ) | |
3 | tgcgrxfr.r | . 2 β’ βΌ = (cgrGβπΊ) | |
4 | tgcgrxfr.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | tgbtwnxfr.d | . 2 β’ (π β π· β π) | |
6 | tgbtwnxfr.e | . 2 β’ (π β πΈ β π) | |
7 | tgbtwnxfr.f | . 2 β’ (π β πΉ β π) | |
8 | tgbtwnxfr.a | . 2 β’ (π β π΄ β π) | |
9 | tgbtwnxfr.b | . 2 β’ (π β π΅ β π) | |
10 | tgbtwnxfr.c | . 2 β’ (π β πΆ β π) | |
11 | tgcgrxfr.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
12 | tgbtwnxfr.2 | . . . 4 β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) | |
13 | 1, 2, 11, 3, 4, 8, 9, 10, 5, 6, 7, 12 | cgr3simp1 28206 | . . 3 β’ (π β (π΄ β π΅) = (π· β πΈ)) |
14 | 13 | eqcomd 2730 | . 2 β’ (π β (π· β πΈ) = (π΄ β π΅)) |
15 | 1, 2, 11, 3, 4, 8, 9, 10, 5, 6, 7, 12 | cgr3simp2 28207 | . . 3 β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) |
16 | 15 | eqcomd 2730 | . 2 β’ (π β (πΈ β πΉ) = (π΅ β πΆ)) |
17 | 1, 2, 11, 3, 4, 8, 9, 10, 5, 6, 7, 12 | cgr3simp3 28208 | . . 3 β’ (π β (πΆ β π΄) = (πΉ β π·)) |
18 | 17 | eqcomd 2730 | . 2 β’ (π β (πΉ β π·) = (πΆ β π΄)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18 | trgcgr 28202 | 1 β’ (π β β¨βπ·πΈπΉββ© βΌ β¨βπ΄π΅πΆββ©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 (class class class)co 7401 β¨βcs3 14789 Basecbs 17142 distcds 17204 TarskiGcstrkg 28113 Itvcitv 28119 cgrGccgrg 28196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-s3 14796 df-trkgc 28134 df-trkgcb 28136 df-trkg 28139 df-cgrg 28197 |
This theorem is referenced by: tgbtwnxfr 28216 legov2 28272 trgcopy 28490 |
Copyright terms: Public domain | W3C validator |