MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem2 29967
Description: Lemma 2 for clwlkclwwlkf1 29972. (Contributed by AV, 24-May-2022.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem2
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
41, 2, 3clwlkclwwlkflem 29966 . . . 4 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
5 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
6 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
71, 5, 6clwlkclwwlkflem 29966 . . . 4 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
84, 7anim12i 613 . . 3 ((𝑈𝐶𝑊𝐶) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)))
9 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
109wlkpwrd 29581 . . . . . 6 (𝐴(Walks‘𝐺)𝐵𝐵 ∈ Word (Vtx‘𝐺))
11103ad2ant1 1133 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 𝐵 ∈ Word (Vtx‘𝐺))
129wlkpwrd 29581 . . . . . 6 (𝐷(Walks‘𝐺)𝐸𝐸 ∈ Word (Vtx‘𝐺))
13123ad2ant1 1133 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → 𝐸 ∈ Word (Vtx‘𝐺))
1411, 13anim12i 613 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)))
15 nnnn0 12409 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
16153ad2ant3 1135 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ0)
17 nnnn0 12409 . . . . . 6 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℕ0)
18173ad2ant3 1135 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ∈ ℕ0)
1916, 18anim12i 613 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0))
20 wlklenvp1 29582 . . . . . . . 8 (𝐴(Walks‘𝐺)𝐵 → (♯‘𝐵) = ((♯‘𝐴) + 1))
21 nnre 12153 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℝ)
2221lep1d 12074 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ ((♯‘𝐴) + 1))
23 breq2 5099 . . . . . . . . 9 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + 1)))
2422, 23imbitrrid 246 . . . . . . . 8 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2520, 24syl 17 . . . . . . 7 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2625a1d 25 . . . . . 6 (𝐴(Walks‘𝐺)𝐵 → ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵))))
27263imp 1110 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≤ (♯‘𝐵))
28 wlklenvp1 29582 . . . . . . . 8 (𝐷(Walks‘𝐺)𝐸 → (♯‘𝐸) = ((♯‘𝐷) + 1))
29 nnre 12153 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℝ)
3029lep1d 12074 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ ((♯‘𝐷) + 1))
31 breq2 5099 . . . . . . . . 9 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ≤ (♯‘𝐸) ↔ (♯‘𝐷) ≤ ((♯‘𝐷) + 1)))
3230, 31imbitrrid 246 . . . . . . . 8 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3328, 32syl 17 . . . . . . 7 (𝐷(Walks‘𝐺)𝐸 → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3433a1d 25 . . . . . 6 (𝐷(Walks‘𝐺)𝐸 → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸))))
35343imp 1110 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ≤ (♯‘𝐸))
3627, 35anim12i 613 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸)))
3714, 19, 363jca 1128 . . 3 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))))
38 pfxeq 14620 . . 3 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
398, 37, 383syl 18 . 2 ((𝑈𝐶𝑊𝐶) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
4039biimp3a 1471 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396   class class class wbr 5095  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cn 12146  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438   prefix cpfx 14595  Vtxcvtx 28959  Walkscwlks 29560  ClWalkscclwlks 29733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-substr 14566  df-pfx 14596  df-wlks 29563  df-clwlks 29734
This theorem is referenced by:  clwlkclwwlkf1lem3  29968  clwlkclwwlkf1  29972
  Copyright terms: Public domain W3C validator