MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem2 27292
Description: Lemma 2 for clwlkclwwlkf1 27303. (Contributed by AV, 24-May-2022.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem2
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
41, 2, 3clwlkclwwlkflem 27291 . . . 4 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
5 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
6 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
71, 5, 6clwlkclwwlkflem 27291 . . . 4 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
84, 7anim12i 607 . . 3 ((𝑈𝐶𝑊𝐶) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)))
9 eqid 2797 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
109wlkpwrd 26859 . . . . . 6 (𝐴(Walks‘𝐺)𝐵𝐵 ∈ Word (Vtx‘𝐺))
11103ad2ant1 1164 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 𝐵 ∈ Word (Vtx‘𝐺))
129wlkpwrd 26859 . . . . . 6 (𝐷(Walks‘𝐺)𝐸𝐸 ∈ Word (Vtx‘𝐺))
13123ad2ant1 1164 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → 𝐸 ∈ Word (Vtx‘𝐺))
1411, 13anim12i 607 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)))
15 nnnn0 11584 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
16153ad2ant3 1166 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ0)
17 nnnn0 11584 . . . . . 6 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℕ0)
18173ad2ant3 1166 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ∈ ℕ0)
1916, 18anim12i 607 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0))
20 wlklenvp1 26860 . . . . . . . 8 (𝐴(Walks‘𝐺)𝐵 → (♯‘𝐵) = ((♯‘𝐴) + 1))
21 nnre 11318 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℝ)
2221lep1d 11245 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ ((♯‘𝐴) + 1))
23 breq2 4845 . . . . . . . . 9 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + 1)))
2422, 23syl5ibr 238 . . . . . . . 8 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2520, 24syl 17 . . . . . . 7 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2625a1d 25 . . . . . 6 (𝐴(Walks‘𝐺)𝐵 → ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵))))
27263imp 1138 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≤ (♯‘𝐵))
28 wlklenvp1 26860 . . . . . . . 8 (𝐷(Walks‘𝐺)𝐸 → (♯‘𝐸) = ((♯‘𝐷) + 1))
29 nnre 11318 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℝ)
3029lep1d 11245 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ ((♯‘𝐷) + 1))
31 breq2 4845 . . . . . . . . 9 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ≤ (♯‘𝐸) ↔ (♯‘𝐷) ≤ ((♯‘𝐷) + 1)))
3230, 31syl5ibr 238 . . . . . . . 8 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3328, 32syl 17 . . . . . . 7 (𝐷(Walks‘𝐺)𝐸 → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3433a1d 25 . . . . . 6 (𝐷(Walks‘𝐺)𝐸 → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸))))
35343imp 1138 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ≤ (♯‘𝐸))
3627, 35anim12i 607 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸)))
3714, 19, 363jca 1159 . . 3 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))))
38 pfxeq 13736 . . 3 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
398, 37, 383syl 18 . 2 ((𝑈𝐶𝑊𝐶) → ((𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷)) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
4039biimp3a 1594 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3087  {crab 3091   class class class wbr 4841  cfv 6099  (class class class)co 6876  1st c1st 7397  2nd c2nd 7398  0cc0 10222  1c1 10223   + caddc 10225  cle 10362  cn 11310  0cn0 11576  ..^cfzo 12716  chash 13366  Word cword 13530   prefix cpfx 13710  Vtxcvtx 26223  Walkscwlks 26838  ClWalkscclwlks 27016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-substr 13662  df-pfx 13711  df-wlks 26841  df-clwlks 27017
This theorem is referenced by:  clwlkclwwlkf1lem3  27294  clwlkclwwlkf1  27303
  Copyright terms: Public domain W3C validator