MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1 29807
Description: 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
clwlkclwwlkf.f 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
Assertion
Ref Expression
clwlkclwwlkf1 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ))
Distinct variable groups:   𝑀,𝐺,𝑐   𝐢,𝑐,𝑀   𝐹,𝑐,𝑀

Proof of Theorem clwlkclwwlkf1
Dummy variables 𝑖 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
31, 2clwlkclwwlkf 29805 . 2 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢⟢(ClWWalksβ€˜πΊ))
4 fveq2 6891 . . . . . . . 8 (𝑐 = π‘₯ β†’ (2nd β€˜π‘) = (2nd β€˜π‘₯))
5 2fveq3 6896 . . . . . . . . 9 (𝑐 = π‘₯ β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘₯)))
65oveq1d 7429 . . . . . . . 8 (𝑐 = π‘₯ β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1))
74, 6oveq12d 7432 . . . . . . 7 (𝑐 = π‘₯ β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)))
8 id 22 . . . . . . 7 (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ 𝐢)
9 ovexd 7449 . . . . . . 7 (π‘₯ ∈ 𝐢 β†’ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) ∈ V)
102, 7, 8, 9fvmptd3 7022 . . . . . 6 (π‘₯ ∈ 𝐢 β†’ (πΉβ€˜π‘₯) = ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)))
11 fveq2 6891 . . . . . . . 8 (𝑐 = 𝑦 β†’ (2nd β€˜π‘) = (2nd β€˜π‘¦))
12 2fveq3 6896 . . . . . . . . 9 (𝑐 = 𝑦 β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘¦)))
1312oveq1d 7429 . . . . . . . 8 (𝑐 = 𝑦 β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))
1411, 13oveq12d 7432 . . . . . . 7 (𝑐 = 𝑦 β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)))
15 id 22 . . . . . . 7 (𝑦 ∈ 𝐢 β†’ 𝑦 ∈ 𝐢)
16 ovexd 7449 . . . . . . 7 (𝑦 ∈ 𝐢 β†’ ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ∈ V)
172, 14, 15, 16fvmptd3 7022 . . . . . 6 (𝑦 ∈ 𝐢 β†’ (πΉβ€˜π‘¦) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)))
1810, 17eqeqan12d 2741 . . . . 5 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) ↔ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))))
1918adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) ↔ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))))
20 simplrl 776 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ π‘₯ ∈ 𝐢)
21 simplrr 777 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ 𝑦 ∈ 𝐢)
22 eqid 2727 . . . . . . . . . . . . . . 15 (1st β€˜π‘₯) = (1st β€˜π‘₯)
23 eqid 2727 . . . . . . . . . . . . . . 15 (2nd β€˜π‘₯) = (2nd β€˜π‘₯)
241, 22, 23clwlkclwwlkflem 29801 . . . . . . . . . . . . . 14 (π‘₯ ∈ 𝐢 β†’ ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•))
25 wlklenvm1 29423 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ (β™―β€˜(1st β€˜π‘₯)) = ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1))
2625eqcomd 2733 . . . . . . . . . . . . . . 15 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
27263ad2ant1 1131 . . . . . . . . . . . . . 14 (((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
2824, 27syl 17 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝐢 β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
2928adantr 480 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
3029oveq2d 7430 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))))
31 eqid 2727 . . . . . . . . . . . . . . 15 (1st β€˜π‘¦) = (1st β€˜π‘¦)
32 eqid 2727 . . . . . . . . . . . . . . 15 (2nd β€˜π‘¦) = (2nd β€˜π‘¦)
331, 31, 32clwlkclwwlkflem 29801 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝐢 β†’ ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•))
34 wlklenvm1 29423 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ (β™―β€˜(1st β€˜π‘¦)) = ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))
3534eqcomd 2733 . . . . . . . . . . . . . . 15 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
36353ad2ant1 1131 . . . . . . . . . . . . . 14 (((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3733, 36syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ 𝐢 β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3837adantl 481 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3938oveq2d 7430 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦))))
4030, 39eqeq12d 2743 . . . . . . . . . 10 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ↔ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
4140adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ↔ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
4241biimpa 476 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦))))
4320, 21, 423jca 1126 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
441, 22, 23, 31, 32clwlkclwwlkf1lem2 29802 . . . . . . 7 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))) β†’ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–)))
45 simpl 482 . . . . . . 7 (((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–)) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)))
4643, 44, 453syl 18 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)))
471, 22, 23, 31, 32clwlkclwwlkf1lem3 29803 . . . . . . 7 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))) β†’ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))
4843, 47syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))
49 simpl 482 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ 𝐺 ∈ USPGraph)
50 wlkcpr 29430 . . . . . . . . . . . . . 14 (π‘₯ ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯))
5150biimpri 227 . . . . . . . . . . . . 13 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ π‘₯ ∈ (Walksβ€˜πΊ))
52513ad2ant1 1131 . . . . . . . . . . . 12 (((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•) β†’ π‘₯ ∈ (Walksβ€˜πΊ))
5324, 52syl 17 . . . . . . . . . . 11 (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ (Walksβ€˜πΊ))
54 wlkcpr 29430 . . . . . . . . . . . . . 14 (𝑦 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦))
5554biimpri 227 . . . . . . . . . . . . 13 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ 𝑦 ∈ (Walksβ€˜πΊ))
56553ad2ant1 1131 . . . . . . . . . . . 12 (((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•) β†’ 𝑦 ∈ (Walksβ€˜πΊ))
5733, 56syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝐢 β†’ 𝑦 ∈ (Walksβ€˜πΊ))
5853, 57anim12i 612 . . . . . . . . . 10 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)))
5958adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)))
60 eqidd 2728 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯)))
6149, 59, 603jca 1126 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))))
6261adantr 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))))
63 uspgr2wlkeq 29447 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))) β†’ (π‘₯ = 𝑦 ↔ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))))
6462, 63syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (π‘₯ = 𝑦 ↔ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))))
6546, 48, 64mpbir2and 712 . . . . 5 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ π‘₯ = 𝑦)
6665ex 412 . . . 4 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) β†’ π‘₯ = 𝑦))
6719, 66sylbid 239 . . 3 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦))
6867ralrimivva 3195 . 2 (𝐺 ∈ USPGraph β†’ βˆ€π‘₯ ∈ 𝐢 βˆ€π‘¦ ∈ 𝐢 ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦))
69 dff13 7259 . 2 (𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ) ↔ (𝐹:𝐢⟢(ClWWalksβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝐢 βˆ€π‘¦ ∈ 𝐢 ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦)))
703, 68, 69sylanbrc 582 1 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  {crab 3427  Vcvv 3469   class class class wbr 5142   ↦ cmpt 5225  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€˜cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  0cc0 11130  1c1 11131   ≀ cle 11271   βˆ’ cmin 11466  β„•cn 12234  ...cfz 13508  ..^cfzo 13651  β™―chash 14313   prefix cpfx 14644  USPGraphcuspgr 28948  Walkscwlks 29397  ClWalkscclwlks 29571  ClWWalkscclwwlk 29778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-lsw 14537  df-substr 14615  df-pfx 14645  df-edg 28848  df-uhgr 28858  df-upgr 28882  df-uspgr 28950  df-wlks 29400  df-clwlks 29572  df-clwwlk 29779
This theorem is referenced by:  clwlkclwwlkf1o  29808
  Copyright terms: Public domain W3C validator