MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1 29263
Description: 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
clwlkclwwlkf.f 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
Assertion
Ref Expression
clwlkclwwlkf1 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ))
Distinct variable groups:   𝑀,𝐺,𝑐   𝐢,𝑐,𝑀   𝐹,𝑐,𝑀

Proof of Theorem clwlkclwwlkf1
Dummy variables 𝑖 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
31, 2clwlkclwwlkf 29261 . 2 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢⟢(ClWWalksβ€˜πΊ))
4 fveq2 6892 . . . . . . . 8 (𝑐 = π‘₯ β†’ (2nd β€˜π‘) = (2nd β€˜π‘₯))
5 2fveq3 6897 . . . . . . . . 9 (𝑐 = π‘₯ β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘₯)))
65oveq1d 7424 . . . . . . . 8 (𝑐 = π‘₯ β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1))
74, 6oveq12d 7427 . . . . . . 7 (𝑐 = π‘₯ β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)))
8 id 22 . . . . . . 7 (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ 𝐢)
9 ovexd 7444 . . . . . . 7 (π‘₯ ∈ 𝐢 β†’ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) ∈ V)
102, 7, 8, 9fvmptd3 7022 . . . . . 6 (π‘₯ ∈ 𝐢 β†’ (πΉβ€˜π‘₯) = ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)))
11 fveq2 6892 . . . . . . . 8 (𝑐 = 𝑦 β†’ (2nd β€˜π‘) = (2nd β€˜π‘¦))
12 2fveq3 6897 . . . . . . . . 9 (𝑐 = 𝑦 β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘¦)))
1312oveq1d 7424 . . . . . . . 8 (𝑐 = 𝑦 β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))
1411, 13oveq12d 7427 . . . . . . 7 (𝑐 = 𝑦 β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)))
15 id 22 . . . . . . 7 (𝑦 ∈ 𝐢 β†’ 𝑦 ∈ 𝐢)
16 ovexd 7444 . . . . . . 7 (𝑦 ∈ 𝐢 β†’ ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ∈ V)
172, 14, 15, 16fvmptd3 7022 . . . . . 6 (𝑦 ∈ 𝐢 β†’ (πΉβ€˜π‘¦) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)))
1810, 17eqeqan12d 2747 . . . . 5 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) ↔ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))))
1918adantl 483 . . . 4 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) ↔ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))))
20 simplrl 776 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ π‘₯ ∈ 𝐢)
21 simplrr 777 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ 𝑦 ∈ 𝐢)
22 eqid 2733 . . . . . . . . . . . . . . 15 (1st β€˜π‘₯) = (1st β€˜π‘₯)
23 eqid 2733 . . . . . . . . . . . . . . 15 (2nd β€˜π‘₯) = (2nd β€˜π‘₯)
241, 22, 23clwlkclwwlkflem 29257 . . . . . . . . . . . . . 14 (π‘₯ ∈ 𝐢 β†’ ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•))
25 wlklenvm1 28879 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ (β™―β€˜(1st β€˜π‘₯)) = ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1))
2625eqcomd 2739 . . . . . . . . . . . . . . 15 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
27263ad2ant1 1134 . . . . . . . . . . . . . 14 (((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
2824, 27syl 17 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝐢 β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
2928adantr 482 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘₯)))
3029oveq2d 7425 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))))
31 eqid 2733 . . . . . . . . . . . . . . 15 (1st β€˜π‘¦) = (1st β€˜π‘¦)
32 eqid 2733 . . . . . . . . . . . . . . 15 (2nd β€˜π‘¦) = (2nd β€˜π‘¦)
331, 31, 32clwlkclwwlkflem 29257 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝐢 β†’ ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•))
34 wlklenvm1 28879 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ (β™―β€˜(1st β€˜π‘¦)) = ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))
3534eqcomd 2739 . . . . . . . . . . . . . . 15 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
36353ad2ant1 1134 . . . . . . . . . . . . . 14 (((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3733, 36syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ 𝐢 β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3837adantl 483 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1) = (β™―β€˜(1st β€˜π‘¦)))
3938oveq2d 7425 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦))))
4030, 39eqeq12d 2749 . . . . . . . . . 10 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ↔ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
4140adantl 483 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) ↔ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
4241biimpa 478 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦))))
4320, 21, 423jca 1129 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))))
441, 22, 23, 31, 32clwlkclwwlkf1lem2 29258 . . . . . . 7 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))) β†’ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–)))
45 simpl 484 . . . . . . 7 (((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–)) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)))
4643, 44, 453syl 18 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)))
471, 22, 23, 31, 32clwlkclwwlkf1lem3 29259 . . . . . . 7 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢 ∧ ((2nd β€˜π‘₯) prefix (β™―β€˜(1st β€˜π‘₯))) = ((2nd β€˜π‘¦) prefix (β™―β€˜(1st β€˜π‘¦)))) β†’ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))
4843, 47syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))
49 simpl 484 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ 𝐺 ∈ USPGraph)
50 wlkcpr 28886 . . . . . . . . . . . . . 14 (π‘₯ ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯))
5150biimpri 227 . . . . . . . . . . . . 13 ((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) β†’ π‘₯ ∈ (Walksβ€˜πΊ))
52513ad2ant1 1134 . . . . . . . . . . . 12 (((1st β€˜π‘₯)(Walksβ€˜πΊ)(2nd β€˜π‘₯) ∧ ((2nd β€˜π‘₯)β€˜0) = ((2nd β€˜π‘₯)β€˜(β™―β€˜(1st β€˜π‘₯))) ∧ (β™―β€˜(1st β€˜π‘₯)) ∈ β„•) β†’ π‘₯ ∈ (Walksβ€˜πΊ))
5324, 52syl 17 . . . . . . . . . . 11 (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ (Walksβ€˜πΊ))
54 wlkcpr 28886 . . . . . . . . . . . . . 14 (𝑦 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦))
5554biimpri 227 . . . . . . . . . . . . 13 ((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) β†’ 𝑦 ∈ (Walksβ€˜πΊ))
56553ad2ant1 1134 . . . . . . . . . . . 12 (((1st β€˜π‘¦)(Walksβ€˜πΊ)(2nd β€˜π‘¦) ∧ ((2nd β€˜π‘¦)β€˜0) = ((2nd β€˜π‘¦)β€˜(β™―β€˜(1st β€˜π‘¦))) ∧ (β™―β€˜(1st β€˜π‘¦)) ∈ β„•) β†’ 𝑦 ∈ (Walksβ€˜πΊ))
5733, 56syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝐢 β†’ 𝑦 ∈ (Walksβ€˜πΊ))
5853, 57anim12i 614 . . . . . . . . . 10 ((π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)))
5958adantl 483 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)))
60 eqidd 2734 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯)))
6149, 59, 603jca 1129 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))))
6261adantr 482 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))))
63 uspgr2wlkeq 28903 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ (Walksβ€˜πΊ) ∧ 𝑦 ∈ (Walksβ€˜πΊ)) ∧ (β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘₯))) β†’ (π‘₯ = 𝑦 ↔ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))))
6462, 63syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ (π‘₯ = 𝑦 ↔ ((β™―β€˜(1st β€˜π‘₯)) = (β™―β€˜(1st β€˜π‘¦)) ∧ βˆ€π‘– ∈ (0...(β™―β€˜(1st β€˜π‘₯)))((2nd β€˜π‘₯)β€˜π‘–) = ((2nd β€˜π‘¦)β€˜π‘–))))
6546, 48, 64mpbir2and 712 . . . . 5 (((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) ∧ ((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1))) β†’ π‘₯ = 𝑦)
6665ex 414 . . . 4 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (((2nd β€˜π‘₯) prefix ((β™―β€˜(2nd β€˜π‘₯)) βˆ’ 1)) = ((2nd β€˜π‘¦) prefix ((β™―β€˜(2nd β€˜π‘¦)) βˆ’ 1)) β†’ π‘₯ = 𝑦))
6719, 66sylbid 239 . . 3 ((𝐺 ∈ USPGraph ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦))
6867ralrimivva 3201 . 2 (𝐺 ∈ USPGraph β†’ βˆ€π‘₯ ∈ 𝐢 βˆ€π‘¦ ∈ 𝐢 ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦))
69 dff13 7254 . 2 (𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ) ↔ (𝐹:𝐢⟢(ClWWalksβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝐢 βˆ€π‘¦ ∈ 𝐢 ((πΉβ€˜π‘₯) = (πΉβ€˜π‘¦) β†’ π‘₯ = 𝑦)))
703, 68, 69sylanbrc 584 1 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢–1-1β†’(ClWWalksβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  Vcvv 3475   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€“1-1β†’wf1 6541  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  0cc0 11110  1c1 11111   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  ...cfz 13484  ..^cfzo 13627  β™―chash 14290   prefix cpfx 14620  USPGraphcuspgr 28408  Walkscwlks 28853  ClWalkscclwlks 29027  ClWWalkscclwwlk 29234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-lsw 14513  df-substr 14591  df-pfx 14621  df-edg 28308  df-uhgr 28318  df-upgr 28342  df-uspgr 28410  df-wlks 28856  df-clwlks 29028  df-clwwlk 29235
This theorem is referenced by:  clwlkclwwlkf1o  29264
  Copyright terms: Public domain W3C validator