MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1 29996
Description: 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 29994 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 fveq2 6881 . . . . . . . 8 (𝑐 = 𝑥 → (2nd𝑐) = (2nd𝑥))
5 2fveq3 6886 . . . . . . . . 9 (𝑐 = 𝑥 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑥)))
65oveq1d 7425 . . . . . . . 8 (𝑐 = 𝑥 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑥)) − 1))
74, 6oveq12d 7428 . . . . . . 7 (𝑐 = 𝑥 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
8 id 22 . . . . . . 7 (𝑥𝐶𝑥𝐶)
9 ovexd 7445 . . . . . . 7 (𝑥𝐶 → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) ∈ V)
102, 7, 8, 9fvmptd3 7014 . . . . . 6 (𝑥𝐶 → (𝐹𝑥) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
11 fveq2 6881 . . . . . . . 8 (𝑐 = 𝑦 → (2nd𝑐) = (2nd𝑦))
12 2fveq3 6886 . . . . . . . . 9 (𝑐 = 𝑦 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑦)))
1312oveq1d 7425 . . . . . . . 8 (𝑐 = 𝑦 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑦)) − 1))
1411, 13oveq12d 7428 . . . . . . 7 (𝑐 = 𝑦 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
15 id 22 . . . . . . 7 (𝑦𝐶𝑦𝐶)
16 ovexd 7445 . . . . . . 7 (𝑦𝐶 → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ∈ V)
172, 14, 15, 16fvmptd3 7014 . . . . . 6 (𝑦𝐶 → (𝐹𝑦) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
1810, 17eqeqan12d 2750 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
1918adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
20 simplrl 776 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥𝐶)
21 simplrr 777 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑦𝐶)
22 eqid 2736 . . . . . . . . . . . . . . 15 (1st𝑥) = (1st𝑥)
23 eqid 2736 . . . . . . . . . . . . . . 15 (2nd𝑥) = (2nd𝑥)
241, 22, 23clwlkclwwlkflem 29990 . . . . . . . . . . . . . 14 (𝑥𝐶 → ((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ))
25 wlklenvm1 29607 . . . . . . . . . . . . . . . 16 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → (♯‘(1st𝑥)) = ((♯‘(2nd𝑥)) − 1))
2625eqcomd 2742 . . . . . . . . . . . . . . 15 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
27263ad2ant1 1133 . . . . . . . . . . . . . 14 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2824, 27syl 17 . . . . . . . . . . . . 13 (𝑥𝐶 → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2928adantr 480 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
3029oveq2d 7426 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑥) prefix (♯‘(1st𝑥))))
31 eqid 2736 . . . . . . . . . . . . . . 15 (1st𝑦) = (1st𝑦)
32 eqid 2736 . . . . . . . . . . . . . . 15 (2nd𝑦) = (2nd𝑦)
331, 31, 32clwlkclwwlkflem 29990 . . . . . . . . . . . . . 14 (𝑦𝐶 → ((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ))
34 wlklenvm1 29607 . . . . . . . . . . . . . . . 16 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → (♯‘(1st𝑦)) = ((♯‘(2nd𝑦)) − 1))
3534eqcomd 2742 . . . . . . . . . . . . . . 15 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
36353ad2ant1 1133 . . . . . . . . . . . . . 14 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3733, 36syl 17 . . . . . . . . . . . . 13 (𝑦𝐶 → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3837adantl 481 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3938oveq2d 7426 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4030, 39eqeq12d 2752 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4140adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4241biimpa 476 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4320, 21, 423jca 1128 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
441, 22, 23, 31, 32clwlkclwwlkf1lem2 29991 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)))
45 simpl 482 . . . . . . 7 (((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
4643, 44, 453syl 18 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
471, 22, 23, 31, 32clwlkclwwlkf1lem3 29992 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
4843, 47syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
49 simpl 482 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → 𝐺 ∈ USPGraph)
50 wlkcpr 29614 . . . . . . . . . . . . . 14 (𝑥 ∈ (Walks‘𝐺) ↔ (1st𝑥)(Walks‘𝐺)(2nd𝑥))
5150biimpri 228 . . . . . . . . . . . . 13 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → 𝑥 ∈ (Walks‘𝐺))
52513ad2ant1 1133 . . . . . . . . . . . 12 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → 𝑥 ∈ (Walks‘𝐺))
5324, 52syl 17 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (Walks‘𝐺))
54 wlkcpr 29614 . . . . . . . . . . . . . 14 (𝑦 ∈ (Walks‘𝐺) ↔ (1st𝑦)(Walks‘𝐺)(2nd𝑦))
5554biimpri 228 . . . . . . . . . . . . 13 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → 𝑦 ∈ (Walks‘𝐺))
56553ad2ant1 1133 . . . . . . . . . . . 12 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → 𝑦 ∈ (Walks‘𝐺))
5733, 56syl 17 . . . . . . . . . . 11 (𝑦𝐶𝑦 ∈ (Walks‘𝐺))
5853, 57anim12i 613 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
5958adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
60 eqidd 2737 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (♯‘(1st𝑥)) = (♯‘(1st𝑥)))
6149, 59, 603jca 1128 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
6261adantr 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
63 uspgr2wlkeq 29631 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6462, 63syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6546, 48, 64mpbir2and 713 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥 = 𝑦)
6665ex 412 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) → 𝑥 = 𝑦))
6719, 66sylbid 240 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3188 . 2 (𝐺 ∈ USPGraph → ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
69 dff13 7252 . 2 (𝐹:𝐶1-1→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
703, 68, 69sylanbrc 583 1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  0cc0 11134  1c1 11135  cle 11275  cmin 11471  cn 12245  ...cfz 13529  ..^cfzo 13676  chash 14353   prefix cpfx 14693  USPGraphcuspgr 29132  Walkscwlks 29581  ClWalkscclwlks 29757  ClWWalkscclwwlk 29967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-lsw 14586  df-substr 14664  df-pfx 14694  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-uspgr 29134  df-wlks 29584  df-clwlks 29758  df-clwwlk 29968
This theorem is referenced by:  clwlkclwwlkf1o  29997
  Copyright terms: Public domain W3C validator