MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1 27795
Description: 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 27793 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 fveq2 6645 . . . . . . . 8 (𝑐 = 𝑥 → (2nd𝑐) = (2nd𝑥))
5 2fveq3 6650 . . . . . . . . 9 (𝑐 = 𝑥 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑥)))
65oveq1d 7150 . . . . . . . 8 (𝑐 = 𝑥 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑥)) − 1))
74, 6oveq12d 7153 . . . . . . 7 (𝑐 = 𝑥 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
8 id 22 . . . . . . 7 (𝑥𝐶𝑥𝐶)
9 ovexd 7170 . . . . . . 7 (𝑥𝐶 → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) ∈ V)
102, 7, 8, 9fvmptd3 6768 . . . . . 6 (𝑥𝐶 → (𝐹𝑥) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
11 fveq2 6645 . . . . . . . 8 (𝑐 = 𝑦 → (2nd𝑐) = (2nd𝑦))
12 2fveq3 6650 . . . . . . . . 9 (𝑐 = 𝑦 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑦)))
1312oveq1d 7150 . . . . . . . 8 (𝑐 = 𝑦 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑦)) − 1))
1411, 13oveq12d 7153 . . . . . . 7 (𝑐 = 𝑦 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
15 id 22 . . . . . . 7 (𝑦𝐶𝑦𝐶)
16 ovexd 7170 . . . . . . 7 (𝑦𝐶 → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ∈ V)
172, 14, 15, 16fvmptd3 6768 . . . . . 6 (𝑦𝐶 → (𝐹𝑦) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
1810, 17eqeqan12d 2815 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
1918adantl 485 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
20 simplrl 776 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥𝐶)
21 simplrr 777 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑦𝐶)
22 eqid 2798 . . . . . . . . . . . . . . 15 (1st𝑥) = (1st𝑥)
23 eqid 2798 . . . . . . . . . . . . . . 15 (2nd𝑥) = (2nd𝑥)
241, 22, 23clwlkclwwlkflem 27789 . . . . . . . . . . . . . 14 (𝑥𝐶 → ((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ))
25 wlklenvm1 27411 . . . . . . . . . . . . . . . 16 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → (♯‘(1st𝑥)) = ((♯‘(2nd𝑥)) − 1))
2625eqcomd 2804 . . . . . . . . . . . . . . 15 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
27263ad2ant1 1130 . . . . . . . . . . . . . 14 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2824, 27syl 17 . . . . . . . . . . . . 13 (𝑥𝐶 → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2928adantr 484 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
3029oveq2d 7151 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑥) prefix (♯‘(1st𝑥))))
31 eqid 2798 . . . . . . . . . . . . . . 15 (1st𝑦) = (1st𝑦)
32 eqid 2798 . . . . . . . . . . . . . . 15 (2nd𝑦) = (2nd𝑦)
331, 31, 32clwlkclwwlkflem 27789 . . . . . . . . . . . . . 14 (𝑦𝐶 → ((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ))
34 wlklenvm1 27411 . . . . . . . . . . . . . . . 16 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → (♯‘(1st𝑦)) = ((♯‘(2nd𝑦)) − 1))
3534eqcomd 2804 . . . . . . . . . . . . . . 15 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
36353ad2ant1 1130 . . . . . . . . . . . . . 14 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3733, 36syl 17 . . . . . . . . . . . . 13 (𝑦𝐶 → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3837adantl 485 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3938oveq2d 7151 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4030, 39eqeq12d 2814 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4140adantl 485 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4241biimpa 480 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4320, 21, 423jca 1125 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
441, 22, 23, 31, 32clwlkclwwlkf1lem2 27790 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)))
45 simpl 486 . . . . . . 7 (((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
4643, 44, 453syl 18 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
471, 22, 23, 31, 32clwlkclwwlkf1lem3 27791 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
4843, 47syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
49 simpl 486 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → 𝐺 ∈ USPGraph)
50 wlkcpr 27418 . . . . . . . . . . . . . 14 (𝑥 ∈ (Walks‘𝐺) ↔ (1st𝑥)(Walks‘𝐺)(2nd𝑥))
5150biimpri 231 . . . . . . . . . . . . 13 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → 𝑥 ∈ (Walks‘𝐺))
52513ad2ant1 1130 . . . . . . . . . . . 12 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → 𝑥 ∈ (Walks‘𝐺))
5324, 52syl 17 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (Walks‘𝐺))
54 wlkcpr 27418 . . . . . . . . . . . . . 14 (𝑦 ∈ (Walks‘𝐺) ↔ (1st𝑦)(Walks‘𝐺)(2nd𝑦))
5554biimpri 231 . . . . . . . . . . . . 13 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → 𝑦 ∈ (Walks‘𝐺))
56553ad2ant1 1130 . . . . . . . . . . . 12 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → 𝑦 ∈ (Walks‘𝐺))
5733, 56syl 17 . . . . . . . . . . 11 (𝑦𝐶𝑦 ∈ (Walks‘𝐺))
5853, 57anim12i 615 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
5958adantl 485 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
60 eqidd 2799 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (♯‘(1st𝑥)) = (♯‘(1st𝑥)))
6149, 59, 603jca 1125 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
6261adantr 484 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
63 uspgr2wlkeq 27435 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6462, 63syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6546, 48, 64mpbir2and 712 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥 = 𝑦)
6665ex 416 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) → 𝑥 = 𝑦))
6719, 66sylbid 243 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3156 . 2 (𝐺 ∈ USPGraph → ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
69 dff13 6991 . 2 (𝐹:𝐶1-1→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
703, 68, 69sylanbrc 586 1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441   class class class wbr 5030  cmpt 5110  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  0cc0 10526  1c1 10527  cle 10665  cmin 10859  cn 11625  ...cfz 12885  ..^cfzo 13028  chash 13686   prefix cpfx 14023  USPGraphcuspgr 26941  Walkscwlks 27386  ClWalkscclwlks 27559  ClWWalkscclwwlk 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-substr 13994  df-pfx 14024  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943  df-wlks 27389  df-clwlks 27560  df-clwwlk 27767
This theorem is referenced by:  clwlkclwwlkf1o  27796
  Copyright terms: Public domain W3C validator