MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1 28275
Description: 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 28273 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 fveq2 6756 . . . . . . . 8 (𝑐 = 𝑥 → (2nd𝑐) = (2nd𝑥))
5 2fveq3 6761 . . . . . . . . 9 (𝑐 = 𝑥 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑥)))
65oveq1d 7270 . . . . . . . 8 (𝑐 = 𝑥 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑥)) − 1))
74, 6oveq12d 7273 . . . . . . 7 (𝑐 = 𝑥 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
8 id 22 . . . . . . 7 (𝑥𝐶𝑥𝐶)
9 ovexd 7290 . . . . . . 7 (𝑥𝐶 → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) ∈ V)
102, 7, 8, 9fvmptd3 6880 . . . . . 6 (𝑥𝐶 → (𝐹𝑥) = ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)))
11 fveq2 6756 . . . . . . . 8 (𝑐 = 𝑦 → (2nd𝑐) = (2nd𝑦))
12 2fveq3 6761 . . . . . . . . 9 (𝑐 = 𝑦 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑦)))
1312oveq1d 7270 . . . . . . . 8 (𝑐 = 𝑦 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑦)) − 1))
1411, 13oveq12d 7273 . . . . . . 7 (𝑐 = 𝑦 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
15 id 22 . . . . . . 7 (𝑦𝐶𝑦𝐶)
16 ovexd 7290 . . . . . . 7 (𝑦𝐶 → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ∈ V)
172, 14, 15, 16fvmptd3 6880 . . . . . 6 (𝑦𝐶 → (𝐹𝑦) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)))
1810, 17eqeqan12d 2752 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
1918adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))))
20 simplrl 773 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥𝐶)
21 simplrr 774 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑦𝐶)
22 eqid 2738 . . . . . . . . . . . . . . 15 (1st𝑥) = (1st𝑥)
23 eqid 2738 . . . . . . . . . . . . . . 15 (2nd𝑥) = (2nd𝑥)
241, 22, 23clwlkclwwlkflem 28269 . . . . . . . . . . . . . 14 (𝑥𝐶 → ((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ))
25 wlklenvm1 27891 . . . . . . . . . . . . . . . 16 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → (♯‘(1st𝑥)) = ((♯‘(2nd𝑥)) − 1))
2625eqcomd 2744 . . . . . . . . . . . . . . 15 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
27263ad2ant1 1131 . . . . . . . . . . . . . 14 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2824, 27syl 17 . . . . . . . . . . . . 13 (𝑥𝐶 → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
2928adantr 480 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑥)) − 1) = (♯‘(1st𝑥)))
3029oveq2d 7271 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑥) prefix (♯‘(1st𝑥))))
31 eqid 2738 . . . . . . . . . . . . . . 15 (1st𝑦) = (1st𝑦)
32 eqid 2738 . . . . . . . . . . . . . . 15 (2nd𝑦) = (2nd𝑦)
331, 31, 32clwlkclwwlkflem 28269 . . . . . . . . . . . . . 14 (𝑦𝐶 → ((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ))
34 wlklenvm1 27891 . . . . . . . . . . . . . . . 16 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → (♯‘(1st𝑦)) = ((♯‘(2nd𝑦)) − 1))
3534eqcomd 2744 . . . . . . . . . . . . . . 15 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
36353ad2ant1 1131 . . . . . . . . . . . . . 14 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3733, 36syl 17 . . . . . . . . . . . . 13 (𝑦𝐶 → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3837adantl 481 . . . . . . . . . . . 12 ((𝑥𝐶𝑦𝐶) → ((♯‘(2nd𝑦)) − 1) = (♯‘(1st𝑦)))
3938oveq2d 7271 . . . . . . . . . . 11 ((𝑥𝐶𝑦𝐶) → ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4030, 39eqeq12d 2754 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4140adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) ↔ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
4241biimpa 476 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦))))
4320, 21, 423jca 1126 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))))
441, 22, 23, 31, 32clwlkclwwlkf1lem2 28270 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)))
45 simpl 482 . . . . . . 7 (((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0..^(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖)) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
4643, 44, 453syl 18 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (♯‘(1st𝑥)) = (♯‘(1st𝑦)))
471, 22, 23, 31, 32clwlkclwwlkf1lem3 28271 . . . . . . 7 ((𝑥𝐶𝑦𝐶 ∧ ((2nd𝑥) prefix (♯‘(1st𝑥))) = ((2nd𝑦) prefix (♯‘(1st𝑦)))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
4843, 47syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))
49 simpl 482 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → 𝐺 ∈ USPGraph)
50 wlkcpr 27898 . . . . . . . . . . . . . 14 (𝑥 ∈ (Walks‘𝐺) ↔ (1st𝑥)(Walks‘𝐺)(2nd𝑥))
5150biimpri 227 . . . . . . . . . . . . 13 ((1st𝑥)(Walks‘𝐺)(2nd𝑥) → 𝑥 ∈ (Walks‘𝐺))
52513ad2ant1 1131 . . . . . . . . . . . 12 (((1st𝑥)(Walks‘𝐺)(2nd𝑥) ∧ ((2nd𝑥)‘0) = ((2nd𝑥)‘(♯‘(1st𝑥))) ∧ (♯‘(1st𝑥)) ∈ ℕ) → 𝑥 ∈ (Walks‘𝐺))
5324, 52syl 17 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (Walks‘𝐺))
54 wlkcpr 27898 . . . . . . . . . . . . . 14 (𝑦 ∈ (Walks‘𝐺) ↔ (1st𝑦)(Walks‘𝐺)(2nd𝑦))
5554biimpri 227 . . . . . . . . . . . . 13 ((1st𝑦)(Walks‘𝐺)(2nd𝑦) → 𝑦 ∈ (Walks‘𝐺))
56553ad2ant1 1131 . . . . . . . . . . . 12 (((1st𝑦)(Walks‘𝐺)(2nd𝑦) ∧ ((2nd𝑦)‘0) = ((2nd𝑦)‘(♯‘(1st𝑦))) ∧ (♯‘(1st𝑦)) ∈ ℕ) → 𝑦 ∈ (Walks‘𝐺))
5733, 56syl 17 . . . . . . . . . . 11 (𝑦𝐶𝑦 ∈ (Walks‘𝐺))
5853, 57anim12i 612 . . . . . . . . . 10 ((𝑥𝐶𝑦𝐶) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
5958adantl 481 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)))
60 eqidd 2739 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (♯‘(1st𝑥)) = (♯‘(1st𝑥)))
6149, 59, 603jca 1126 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
6261adantr 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))))
63 uspgr2wlkeq 27915 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st𝑥)) = (♯‘(1st𝑥))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6462, 63syl 17 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → (𝑥 = 𝑦 ↔ ((♯‘(1st𝑥)) = (♯‘(1st𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st𝑥)))((2nd𝑥)‘𝑖) = ((2nd𝑦)‘𝑖))))
6546, 48, 64mpbir2and 709 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) ∧ ((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1))) → 𝑥 = 𝑦)
6665ex 412 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → (((2nd𝑥) prefix ((♯‘(2nd𝑥)) − 1)) = ((2nd𝑦) prefix ((♯‘(2nd𝑦)) − 1)) → 𝑥 = 𝑦))
6719, 66sylbid 239 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3114 . 2 (𝐺 ∈ USPGraph → ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
69 dff13 7109 . 2 (𝐹:𝐶1-1→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑥𝐶𝑦𝐶 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
703, 68, 69sylanbrc 582 1 (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  0cc0 10802  1c1 10803  cle 10941  cmin 11135  cn 11903  ...cfz 13168  ..^cfzo 13311  chash 13972   prefix cpfx 14311  USPGraphcuspgr 27421  Walkscwlks 27866  ClWalkscclwlks 28039  ClWWalkscclwwlk 28246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-substr 14282  df-pfx 14312  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-uspgr 27423  df-wlks 27869  df-clwlks 28040  df-clwwlk 28247
This theorem is referenced by:  clwlkclwwlkf1o  28276
  Copyright terms: Public domain W3C validator