| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2740 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑛))) |
| 2 | 1 | rexbidv 3165 |
. . 3
⊢ (𝑦 = 𝑥 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛))) |
| 3 | 2 | cbvrabv 3431 |
. 2
⊢ {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} |
| 4 | | eqid 2736 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 5 | 4 | clwwlknwrd 30020 |
. . . . . . 7
⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑤 ∈ Word (Vtx‘𝐺)) |
| 6 | 5 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ Word (Vtx‘𝐺)) |
| 7 | | simprr 772 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) |
| 8 | 6, 7 | jca 511 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 9 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺))) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
| 10 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑛 ∈ (0...𝑁)) |
| 11 | | clwwnisshclwwsn 30045 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)) |
| 12 | 9, 10, 11 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)) |
| 13 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))) |
| 14 | 13 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))) |
| 15 | 12, 14 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) |
| 16 | 15 | exp31 419 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))) |
| 17 | 16 | com23 86 |
. . . . . . . . 9
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))) |
| 18 | 17 | rexlimdva 3142 |
. . . . . . . 8
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))) |
| 19 | 18 | imp 406 |
. . . . . . 7
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))) |
| 20 | 19 | impcom 407 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) |
| 21 | | simprr 772 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) |
| 22 | 20, 21 | jca 511 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 23 | 8, 22 | impbida 800 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))) |
| 24 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛))) |
| 25 | 24 | rexbidv 3165 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 26 | 25 | elrab 3676 |
. . . 4
⊢ (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 27 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛))) |
| 28 | 27 | rexbidv 3165 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 29 | 28 | elrab 3676 |
. . . 4
⊢ (𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) |
| 30 | 23, 26, 29 | 3bitr4g 314 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ 𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})) |
| 31 | 30 | eqrdv 2734 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}) |
| 32 | 3, 31 | eqtrid 2783 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}) |