MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknscsh Structured version   Visualization version   GIF version

Theorem clwwlknscsh 30034
Description: The set of cyclical shifts of a word representing a closed walk is the set of closed walks represented by cyclical shifts of a word. (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
clwwlknscsh ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝐺,𝑦   𝑛,𝑁,𝑦   𝑛,𝑊,𝑦

Proof of Theorem clwwlknscsh
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . 4 (𝑦 = 𝑥 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑛)))
21rexbidv 3156 . . 3 (𝑦 = 𝑥 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)))
32cbvrabv 3405 . 2 {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)}
4 eqid 2731 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlknwrd 30006 . . . . . . 7 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑤 ∈ Word (Vtx‘𝐺))
65ad2antrl 728 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ Word (Vtx‘𝐺))
7 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
86, 7jca 511 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
9 simprr 772 . . . . . . . . . . . . 13 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
10 simpllr 775 . . . . . . . . . . . . 13 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑛 ∈ (0...𝑁))
11 clwwnisshclwwsn 30031 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
129, 10, 11syl2an2r 685 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
13 eleq1 2819 . . . . . . . . . . . . 13 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1413adantl 481 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1512, 14mpbird 257 . . . . . . . . . . 11 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
1615exp31 419 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1716com23 86 . . . . . . . . 9 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1817rexlimdva 3133 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1918imp 406 . . . . . . 7 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2019impcom 407 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
21 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
2220, 21jca 511 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
238, 22impbida 800 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))))
24 eqeq1 2735 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2524rexbidv 3156 . . . . 5 (𝑥 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2625elrab 3642 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
27 eqeq1 2735 . . . . . 6 (𝑦 = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2827rexbidv 3156 . . . . 5 (𝑦 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2928elrab 3642 . . . 4 (𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
3023, 26, 293bitr4g 314 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ 𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}))
3130eqrdv 2729 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
323, 31eqtrid 2778 1 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cfv 6476  (class class class)co 7341  0cc0 11001  0cn0 12376  ...cfz 13402  Word cword 14415   cyclShift ccsh 14690  Vtxcvtx 28969   ClWWalksN cclwwlkn 29996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-substr 14544  df-pfx 14574  df-csh 14691  df-clwwlk 29954  df-clwwlkn 29997
This theorem is referenced by:  hashecclwwlkn1  30049  umgrhashecclwwlk  30050
  Copyright terms: Public domain W3C validator