MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonccat Structured version   Visualization version   GIF version

Theorem clwwlknonccat 29040
Description: The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknonccat ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))

Proof of Theorem clwwlknonccat
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
21adantr 481 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
3 simpl 483 . . . . 5 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
43adantl 482 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 485 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → (𝐴‘0) = 𝑋)
65adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = 𝑋)
7 simpr 485 . . . . . . 7 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → (𝐵‘0) = 𝑋)
87eqcomd 2742 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝑋 = (𝐵‘0))
98adantl 482 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝑋 = (𝐵‘0))
106, 9eqtrd 2776 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = (𝐵‘0))
11 clwwlknccat 29007 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
122, 4, 10, 11syl3anc 1371 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
13 eqid 2736 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
1413clwwlknwrd 28978 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1514adantr 481 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ Word (Vtx‘𝐺))
1615adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ Word (Vtx‘𝐺))
1713clwwlknwrd 28978 . . . . . . 7 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1817adantr 481 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ Word (Vtx‘𝐺))
1918adantl 482 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ Word (Vtx‘𝐺))
20 clwwlknnn 28977 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝑀 ∈ ℕ)
21 clwwlknlen 28976 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
22 nngt0 12184 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
23 breq2 5109 . . . . . . . . 9 ((♯‘𝐴) = 𝑀 → (0 < (♯‘𝐴) ↔ 0 < 𝑀))
2422, 23syl5ibrcom 246 . . . . . . . 8 (𝑀 ∈ ℕ → ((♯‘𝐴) = 𝑀 → 0 < (♯‘𝐴)))
2520, 21, 24sylc 65 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 0 < (♯‘𝐴))
2625adantr 481 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 0 < (♯‘𝐴))
2726adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 0 < (♯‘𝐴))
28 ccatfv0 14471 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
2916, 19, 27, 28syl3anc 1371 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
3029, 6eqtrd 2776 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = 𝑋)
3112, 30jca 512 . 2 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
32 isclwwlknon 29035 . . 3 (𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋))
33 isclwwlknon 29035 . . 3 (𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋))
3432, 33anbi12i 627 . 2 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)))
35 isclwwlknon 29035 . 2 ((𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
3631, 34, 353imtr4i 291 1 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051   + caddc 11054   < clt 11189  cn 12153  chash 14230  Word cword 14402   ++ cconcat 14458  Vtxcvtx 27947   ClWWalksN cclwwlkn 28968  ClWWalksNOncclwwlknon 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-clwwlk 28926  df-clwwlkn 28969  df-clwwlknon 29032
This theorem is referenced by:  2clwwlk2clwwlk  29294
  Copyright terms: Public domain W3C validator