MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonccat Structured version   Visualization version   GIF version

Theorem clwwlknonccat 29338
Description: The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknonccat ((𝐴 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑀) ∧ 𝐡 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ (𝐴 ++ 𝐡) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑀 + 𝑁)))

Proof of Theorem clwwlknonccat
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) β†’ 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
21adantr 481 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
3 simpl 483 . . . . 5 ((𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋) β†’ 𝐡 ∈ (𝑁 ClWWalksN 𝐺))
43adantl 482 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 𝐡 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 485 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) β†’ (π΄β€˜0) = 𝑋)
65adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ (π΄β€˜0) = 𝑋)
7 simpr 485 . . . . . . 7 ((𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋) β†’ (π΅β€˜0) = 𝑋)
87eqcomd 2738 . . . . . 6 ((𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋) β†’ 𝑋 = (π΅β€˜0))
98adantl 482 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 𝑋 = (π΅β€˜0))
106, 9eqtrd 2772 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ (π΄β€˜0) = (π΅β€˜0))
11 clwwlknccat 29305 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΄β€˜0) = (π΅β€˜0)) β†’ (𝐴 ++ 𝐡) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
122, 4, 10, 11syl3anc 1371 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ (𝐴 ++ 𝐡) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
13 eqid 2732 . . . . . . . 8 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1413clwwlknwrd 29276 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) β†’ 𝐴 ∈ Word (Vtxβ€˜πΊ))
1514adantr 481 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) β†’ 𝐴 ∈ Word (Vtxβ€˜πΊ))
1615adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 𝐴 ∈ Word (Vtxβ€˜πΊ))
1713clwwlknwrd 29276 . . . . . . 7 (𝐡 ∈ (𝑁 ClWWalksN 𝐺) β†’ 𝐡 ∈ Word (Vtxβ€˜πΊ))
1817adantr 481 . . . . . 6 ((𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋) β†’ 𝐡 ∈ Word (Vtxβ€˜πΊ))
1918adantl 482 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 𝐡 ∈ Word (Vtxβ€˜πΊ))
20 clwwlknnn 29275 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) β†’ 𝑀 ∈ β„•)
21 clwwlknlen 29274 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) β†’ (β™―β€˜π΄) = 𝑀)
22 nngt0 12239 . . . . . . . . 9 (𝑀 ∈ β„• β†’ 0 < 𝑀)
23 breq2 5151 . . . . . . . . 9 ((β™―β€˜π΄) = 𝑀 β†’ (0 < (β™―β€˜π΄) ↔ 0 < 𝑀))
2422, 23syl5ibrcom 246 . . . . . . . 8 (𝑀 ∈ β„• β†’ ((β™―β€˜π΄) = 𝑀 β†’ 0 < (β™―β€˜π΄)))
2520, 21, 24sylc 65 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) β†’ 0 < (β™―β€˜π΄))
2625adantr 481 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) β†’ 0 < (β™―β€˜π΄))
2726adantr 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ 0 < (β™―β€˜π΄))
28 ccatfv0 14529 . . . . 5 ((𝐴 ∈ Word (Vtxβ€˜πΊ) ∧ 𝐡 ∈ Word (Vtxβ€˜πΊ) ∧ 0 < (β™―β€˜π΄)) β†’ ((𝐴 ++ 𝐡)β€˜0) = (π΄β€˜0))
2916, 19, 27, 28syl3anc 1371 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ ((𝐴 ++ 𝐡)β€˜0) = (π΄β€˜0))
3029, 6eqtrd 2772 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ ((𝐴 ++ 𝐡)β€˜0) = 𝑋)
3112, 30jca 512 . 2 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)) β†’ ((𝐴 ++ 𝐡) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐡)β€˜0) = 𝑋))
32 isclwwlknon 29333 . . 3 (𝐴 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋))
33 isclwwlknon 29333 . . 3 (𝐡 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋))
3432, 33anbi12i 627 . 2 ((𝐴 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑀) ∧ 𝐡 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (π΄β€˜0) = 𝑋) ∧ (𝐡 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π΅β€˜0) = 𝑋)))
35 isclwwlknon 29333 . 2 ((𝐴 ++ 𝐡) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐡) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐡)β€˜0) = 𝑋))
3631, 34, 353imtr4i 291 1 ((𝐴 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑀) ∧ 𝐡 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)) β†’ (𝐴 ++ 𝐡) ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  0cc0 11106   + caddc 11109   < clt 11244  β„•cn 12208  β™―chash 14286  Word cword 14460   ++ cconcat 14516  Vtxcvtx 28245   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  2clwwlk2clwwlk  29592
  Copyright terms: Public domain W3C validator