MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonccat Structured version   Visualization version   GIF version

Theorem clwwlknonccat 30059
Description: The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknonccat ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))

Proof of Theorem clwwlknonccat
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
21adantr 480 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
3 simpl 482 . . . . 5 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
43adantl 481 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 484 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → (𝐴‘0) = 𝑋)
65adantr 480 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = 𝑋)
7 simpr 484 . . . . . . 7 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → (𝐵‘0) = 𝑋)
87eqcomd 2735 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝑋 = (𝐵‘0))
98adantl 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝑋 = (𝐵‘0))
106, 9eqtrd 2764 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = (𝐵‘0))
11 clwwlknccat 30026 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
122, 4, 10, 11syl3anc 1373 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
13 eqid 2729 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
1413clwwlknwrd 29997 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1514adantr 480 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ Word (Vtx‘𝐺))
1615adantr 480 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ Word (Vtx‘𝐺))
1713clwwlknwrd 29997 . . . . . . 7 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1817adantr 480 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ Word (Vtx‘𝐺))
1918adantl 481 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ Word (Vtx‘𝐺))
20 clwwlknnn 29996 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝑀 ∈ ℕ)
21 clwwlknlen 29995 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
22 nngt0 12178 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
23 breq2 5099 . . . . . . . . 9 ((♯‘𝐴) = 𝑀 → (0 < (♯‘𝐴) ↔ 0 < 𝑀))
2422, 23syl5ibrcom 247 . . . . . . . 8 (𝑀 ∈ ℕ → ((♯‘𝐴) = 𝑀 → 0 < (♯‘𝐴)))
2520, 21, 24sylc 65 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 0 < (♯‘𝐴))
2625adantr 480 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 0 < (♯‘𝐴))
2726adantr 480 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 0 < (♯‘𝐴))
28 ccatfv0 14509 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
2916, 19, 27, 28syl3anc 1373 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
3029, 6eqtrd 2764 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = 𝑋)
3112, 30jca 511 . 2 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
32 isclwwlknon 30054 . . 3 (𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋))
33 isclwwlknon 30054 . . 3 (𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋))
3432, 33anbi12i 628 . 2 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)))
35 isclwwlknon 30054 . 2 ((𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
3631, 34, 353imtr4i 292 1 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028   + caddc 11031   < clt 11168  cn 12147  chash 14256  Word cword 14439   ++ cconcat 14496  Vtxcvtx 28960   ClWWalksN cclwwlkn 29987  ClWWalksNOncclwwlknon 30050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-xnn0 12477  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-hash 14257  df-word 14440  df-lsw 14489  df-concat 14497  df-clwwlk 29945  df-clwwlkn 29988  df-clwwlknon 30051
This theorem is referenced by:  2clwwlk2clwwlk  30313
  Copyright terms: Public domain W3C validator