Proof of Theorem clwwlknonccat
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺)) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺)) |
| 3 | | simpl 482 |
. . . . 5
⊢ ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) |
| 4 | 3 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → (𝐴‘0) = 𝑋) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = 𝑋) |
| 7 | | simpr 484 |
. . . . . . 7
⊢ ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → (𝐵‘0) = 𝑋) |
| 8 | 7 | eqcomd 2742 |
. . . . . 6
⊢ ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝑋 = (𝐵‘0)) |
| 9 | 8 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝑋 = (𝐵‘0)) |
| 10 | 6, 9 | eqtrd 2771 |
. . . 4
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = (𝐵‘0)) |
| 11 | | clwwlknccat 30049 |
. . . 4
⊢ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺)) |
| 12 | 2, 4, 10, 11 | syl3anc 1373 |
. . 3
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺)) |
| 13 | | eqid 2736 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 14 | 13 | clwwlknwrd 30020 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺)) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ Word (Vtx‘𝐺)) |
| 16 | 15 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ Word (Vtx‘𝐺)) |
| 17 | 13 | clwwlknwrd 30020 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺)) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ Word (Vtx‘𝐺)) |
| 19 | 18 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
| 20 | | clwwlknnn 30019 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝑀 ∈ ℕ) |
| 21 | | clwwlknlen 30018 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀) |
| 22 | | nngt0 12276 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 0 <
𝑀) |
| 23 | | breq2 5128 |
. . . . . . . . 9
⊢
((♯‘𝐴) =
𝑀 → (0 <
(♯‘𝐴) ↔ 0
< 𝑀)) |
| 24 | 22, 23 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ →
((♯‘𝐴) = 𝑀 → 0 <
(♯‘𝐴))) |
| 25 | 20, 21, 24 | sylc 65 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 0 < (♯‘𝐴)) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 0 < (♯‘𝐴)) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 0 < (♯‘𝐴)) |
| 28 | | ccatfv0 14606 |
. . . . 5
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
| 29 | 16, 19, 27, 28 | syl3anc 1373 |
. . . 4
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
| 30 | 29, 6 | eqtrd 2771 |
. . 3
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = 𝑋) |
| 31 | 12, 30 | jca 511 |
. 2
⊢ (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋)) |
| 32 | | isclwwlknon 30077 |
. . 3
⊢ (𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋)) |
| 33 | | isclwwlknon 30077 |
. . 3
⊢ (𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) |
| 34 | 32, 33 | anbi12i 628 |
. 2
⊢ ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋))) |
| 35 | | isclwwlknon 30077 |
. 2
⊢ ((𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋)) |
| 36 | 31, 34, 35 | 3imtr4i 292 |
1
⊢ ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁))) |