MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonccat Structured version   Visualization version   GIF version

Theorem clwwlknonccat 27879
Description: The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknonccat ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))

Proof of Theorem clwwlknonccat
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
21adantr 484 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
3 simpl 486 . . . . 5 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
43adantl 485 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 488 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → (𝐴‘0) = 𝑋)
65adantr 484 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = 𝑋)
7 simpr 488 . . . . . . 7 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → (𝐵‘0) = 𝑋)
87eqcomd 2828 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝑋 = (𝐵‘0))
98adantl 485 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝑋 = (𝐵‘0))
106, 9eqtrd 2857 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = (𝐵‘0))
11 clwwlknccat 27846 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
122, 4, 10, 11syl3anc 1368 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
13 eqid 2822 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
1413clwwlknwrd 27817 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1514adantr 484 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ Word (Vtx‘𝐺))
1615adantr 484 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ Word (Vtx‘𝐺))
1713clwwlknwrd 27817 . . . . . . 7 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1817adantr 484 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ Word (Vtx‘𝐺))
1918adantl 485 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ Word (Vtx‘𝐺))
20 clwwlknnn 27816 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝑀 ∈ ℕ)
21 clwwlknlen 27815 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
22 nngt0 11656 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
23 breq2 5046 . . . . . . . . 9 ((♯‘𝐴) = 𝑀 → (0 < (♯‘𝐴) ↔ 0 < 𝑀))
2422, 23syl5ibrcom 250 . . . . . . . 8 (𝑀 ∈ ℕ → ((♯‘𝐴) = 𝑀 → 0 < (♯‘𝐴)))
2520, 21, 24sylc 65 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 0 < (♯‘𝐴))
2625adantr 484 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 0 < (♯‘𝐴))
2726adantr 484 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 0 < (♯‘𝐴))
28 ccatfv0 13928 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
2916, 19, 27, 28syl3anc 1368 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
3029, 6eqtrd 2857 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = 𝑋)
3112, 30jca 515 . 2 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
32 isclwwlknon 27874 . . 3 (𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋))
33 isclwwlknon 27874 . . 3 (𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋))
3432, 33anbi12i 629 . 2 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)))
35 isclwwlknon 27874 . 2 ((𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
3631, 34, 353imtr4i 295 1 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  (class class class)co 7140  0cc0 10526   + caddc 10529   < clt 10664  cn 11625  chash 13686  Word cword 13857   ++ cconcat 13913  Vtxcvtx 26787   ClWWalksN cclwwlkn 27807  ClWWalksNOncclwwlknon 27870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-clwwlk 27765  df-clwwlkn 27808  df-clwwlknon 27871
This theorem is referenced by:  2clwwlk2clwwlk  28133
  Copyright terms: Public domain W3C validator