Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ehalf Structured version   Visualization version   GIF version

Theorem dignn0ehalf 45963
Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
dignn0ehalf (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))

Proof of Theorem dignn0ehalf
StepHypRef Expression
1 nn0cn 12243 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
213ad2ant2 1133 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ ℂ)
3 2cnne0 12183 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
43a1i 11 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠ 0))
5 2nn0 12250 . . . . . . . . . . 11 2 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → 2 ∈ ℕ0)
7 id 22 . . . . . . . . . 10 (𝐼 ∈ ℕ0𝐼 ∈ ℕ0)
86, 7nn0expcld 13961 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℕ0)
98nn0cnd 12295 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℂ)
10 2cnd 12051 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 12077 . . . . . . . . . 10 2 ≠ 0
1211a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ≠ 0)
13 nn0z 12343 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
1410, 12, 13expne0d 13870 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ≠ 0)
159, 14jca 512 . . . . . . 7 (𝐼 ∈ ℕ0 → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
16153ad2ant3 1134 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
17 divdiv1 11686 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
182, 4, 16, 17syl3anc 1370 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
1910, 9mulcomd 10996 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
20193ad2ant3 1134 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
21 2cnd 12051 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℂ)
22 simp3 1137 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
2321, 22expp1d 13865 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2))
2420, 23eqtr4d 2781 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1)))
2524oveq2d 7291 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1))))
2618, 25eqtr2d 2779 . . . 4 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼)))
2726fveq2d 6778 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼))))
2827oveq1d 7290 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
29 2nn 12046 . . . 4 2 ∈ ℕ
3029a1i 11 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℕ)
31 peano2nn0 12273 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
32313ad2ant3 1134 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
33 nn0rp0 13187 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
34333ad2ant2 1133 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
35 nn0digval 45946 . . 3 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3630, 32, 34, 35syl3anc 1370 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
37 nn0rp0 13187 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ (0[,)+∞))
38373ad2ant1 1132 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / 2) ∈ (0[,)+∞))
39 nn0digval 45946 . . 3 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4030, 22, 38, 39syl3anc 1370 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4128, 36, 403eqtr4d 2788 1 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  [,)cico 13081  cfl 13510   mod cmo 13589  cexp 13782  digitcdig 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-ico 13085  df-seq 13722  df-exp 13783  df-dig 45942
This theorem is referenced by:  dignn0flhalf  45964  nn0sumshdiglemA  45965
  Copyright terms: Public domain W3C validator