Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ehalf Structured version   Visualization version   GIF version

Theorem dignn0ehalf 42939
Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
dignn0ehalf (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))

Proof of Theorem dignn0ehalf
StepHypRef Expression
1 nn0cn 11504 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
213ad2ant2 1128 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ ℂ)
3 2cnne0 11444 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
43a1i 11 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠ 0))
5 2nn0 11511 . . . . . . . . . . 11 2 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → 2 ∈ ℕ0)
7 id 22 . . . . . . . . . 10 (𝐼 ∈ ℕ0𝐼 ∈ ℕ0)
86, 7nn0expcld 13238 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℕ0)
98nn0cnd 11555 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℂ)
10 2cnd 11295 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 11315 . . . . . . . . . 10 2 ≠ 0
1211a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ≠ 0)
13 nn0z 11602 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
1410, 12, 13expne0d 13221 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ≠ 0)
159, 14jca 501 . . . . . . 7 (𝐼 ∈ ℕ0 → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
16153ad2ant3 1129 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
17 divdiv1 10938 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
182, 4, 16, 17syl3anc 1476 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
1910, 9mulcomd 10263 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
20193ad2ant3 1129 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
21 2cnd 11295 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℂ)
22 simp3 1132 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
2321, 22expp1d 13216 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2))
2420, 23eqtr4d 2808 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1)))
2524oveq2d 6809 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1))))
2618, 25eqtr2d 2806 . . . 4 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼)))
2726fveq2d 6336 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼))))
2827oveq1d 6808 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
29 2nn 11387 . . . 4 2 ∈ ℕ
3029a1i 11 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℕ)
31 peano2nn0 11535 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
32313ad2ant3 1129 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
33 nn0rp0 12486 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
34333ad2ant2 1128 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
35 nn0digval 42922 . . 3 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3630, 32, 34, 35syl3anc 1476 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
37 nn0rp0 12486 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ (0[,)+∞))
38373ad2ant1 1127 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / 2) ∈ (0[,)+∞))
39 nn0digval 42922 . . 3 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4030, 22, 38, 39syl3anc 1476 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4128, 36, 403eqtr4d 2815 1 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  [,)cico 12382  cfl 12799   mod cmo 12876  cexp 13067  digitcdig 42917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-ico 12386  df-seq 13009  df-exp 13068  df-dig 42918
This theorem is referenced by:  dignn0flhalf  42940  nn0sumshdiglemA  42941
  Copyright terms: Public domain W3C validator