Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ehalf Structured version   Visualization version   GIF version

Theorem dignn0ehalf 48606
Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
dignn0ehalf (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))

Proof of Theorem dignn0ehalf
StepHypRef Expression
1 nn0cn 12452 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
213ad2ant2 1134 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ ℂ)
3 2cnne0 12391 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
43a1i 11 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠ 0))
5 2nn0 12459 . . . . . . . . . . 11 2 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → 2 ∈ ℕ0)
7 id 22 . . . . . . . . . 10 (𝐼 ∈ ℕ0𝐼 ∈ ℕ0)
86, 7nn0expcld 14211 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℕ0)
98nn0cnd 12505 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℂ)
10 2cnd 12264 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 12290 . . . . . . . . . 10 2 ≠ 0
1211a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ≠ 0)
13 nn0z 12554 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
1410, 12, 13expne0d 14117 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ≠ 0)
159, 14jca 511 . . . . . . 7 (𝐼 ∈ ℕ0 → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
16153ad2ant3 1135 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
17 divdiv1 11893 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
182, 4, 16, 17syl3anc 1373 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
1910, 9mulcomd 11195 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
20193ad2ant3 1135 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
21 2cnd 12264 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℂ)
22 simp3 1138 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
2321, 22expp1d 14112 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2))
2420, 23eqtr4d 2767 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1)))
2524oveq2d 7403 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1))))
2618, 25eqtr2d 2765 . . . 4 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼)))
2726fveq2d 6862 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼))))
2827oveq1d 7402 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
29 2nn 12259 . . . 4 2 ∈ ℕ
3029a1i 11 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℕ)
31 peano2nn0 12482 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
32313ad2ant3 1135 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
33 nn0rp0 13416 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
34333ad2ant2 1134 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
35 nn0digval 48589 . . 3 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3630, 32, 34, 35syl3anc 1373 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
37 nn0rp0 13416 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ (0[,)+∞))
38373ad2ant1 1133 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / 2) ∈ (0[,)+∞))
39 nn0digval 48589 . . 3 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4030, 22, 38, 39syl3anc 1373 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4128, 36, 403eqtr4d 2774 1 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  [,)cico 13308  cfl 13752   mod cmo 13831  cexp 14026  digitcdig 48584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-ico 13312  df-seq 13967  df-exp 14027  df-dig 48585
This theorem is referenced by:  dignn0flhalf  48607  nn0sumshdiglemA  48608
  Copyright terms: Public domain W3C validator