Proof of Theorem dignn0ehalf
| Step | Hyp | Ref
| Expression |
| 1 | | nn0cn 12516 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) |
| 2 | 1 | 3ad2ant2 1134 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → 𝐴 ∈ ℂ) |
| 3 | | 2cnne0 12455 |
. . . . . . 7
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠
0)) |
| 5 | | 2nn0 12523 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
| 6 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 7 | | id 22 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℕ0
→ 𝐼 ∈
ℕ0) |
| 8 | 6, 7 | nn0expcld 14269 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ0
→ (2↑𝐼) ∈
ℕ0) |
| 9 | 8 | nn0cnd 12569 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ0
→ (2↑𝐼) ∈
ℂ) |
| 10 | | 2cnd 12323 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ0
→ 2 ∈ ℂ) |
| 11 | | 2ne0 12349 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ0
→ 2 ≠ 0) |
| 13 | | nn0z 12618 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ0
→ 𝐼 ∈
ℤ) |
| 14 | 10, 12, 13 | expne0d 14175 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ0
→ (2↑𝐼) ≠
0) |
| 15 | 9, 14 | jca 511 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ0
→ ((2↑𝐼) ∈
ℂ ∧ (2↑𝐼)
≠ 0)) |
| 16 | 15 | 3ad2ant3 1135 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) |
| 17 | | divdiv1 11957 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼)))) |
| 18 | 2, 4, 16, 17 | syl3anc 1373 |
. . . . 5
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼)))) |
| 19 | 10, 9 | mulcomd 11261 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ0
→ (2 · (2↑𝐼)) = ((2↑𝐼) · 2)) |
| 20 | 19 | 3ad2ant3 1135 |
. . . . . . 7
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2)) |
| 21 | | 2cnd 12323 |
. . . . . . . 8
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → 2 ∈ ℂ) |
| 22 | | simp3 1138 |
. . . . . . . 8
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → 𝐼 ∈
ℕ0) |
| 23 | 21, 22 | expp1d 14170 |
. . . . . . 7
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2)) |
| 24 | 20, 23 | eqtr4d 2774 |
. . . . . 6
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1))) |
| 25 | 24 | oveq2d 7426 |
. . . . 5
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1)))) |
| 26 | 18, 25 | eqtr2d 2772 |
. . . 4
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼))) |
| 27 | 26 | fveq2d 6885 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼)))) |
| 28 | 27 | oveq1d 7425 |
. 2
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2)) |
| 29 | | 2nn 12318 |
. . . 4
⊢ 2 ∈
ℕ |
| 30 | 29 | a1i 11 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → 2 ∈ ℕ) |
| 31 | | peano2nn0 12546 |
. . . 4
⊢ (𝐼 ∈ ℕ0
→ (𝐼 + 1) ∈
ℕ0) |
| 32 | 31 | 3ad2ant3 1135 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (𝐼 + 1) ∈
ℕ0) |
| 33 | | nn0rp0 13477 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
(0[,)+∞)) |
| 34 | 33 | 3ad2ant2 1134 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → 𝐴 ∈ (0[,)+∞)) |
| 35 | | nn0digval 48547 |
. . 3
⊢ ((2
∈ ℕ ∧ (𝐼 +
1) ∈ ℕ0 ∧ 𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2)) |
| 36 | 30, 32, 34, 35 | syl3anc 1373 |
. 2
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2)) |
| 37 | | nn0rp0 13477 |
. . . 4
⊢ ((𝐴 / 2) ∈ ℕ0
→ (𝐴 / 2) ∈
(0[,)+∞)) |
| 38 | 37 | 3ad2ant1 1133 |
. . 3
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (𝐴 / 2) ∈
(0[,)+∞)) |
| 39 | | nn0digval 48547 |
. . 3
⊢ ((2
∈ ℕ ∧ 𝐼
∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2)) |
| 40 | 30, 22, 38, 39 | syl3anc 1373 |
. 2
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2)) |
| 41 | 28, 36, 40 | 3eqtr4d 2781 |
1
⊢ (((𝐴 / 2) ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝐼
∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) |