Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divdiv1d | Structured version Visualization version GIF version |
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divdiv1d | ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | divdiv23d.5 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
6 | divdiv1 11686 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | |
7 | 1, 2, 3, 4, 5, 6 | syl122anc 1378 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℂcc 10869 0cc0 10871 · cmul 10876 / cdiv 11632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 |
This theorem is referenced by: discr 13955 hashf1 14171 bcfallfac 15754 eftlub 15818 tanval2 15842 sinhval 15863 sqrt2irrlem 15957 bitsp1 16138 4sqlem7 16645 4sqlem10 16648 uniioombl 24753 dvrec 25119 dvsincos 25145 dvcvx 25184 taylthlem2 25533 mcubic 25997 cubic2 25998 quart1lem 26005 quart1 26006 log2cnv 26094 log2tlbnd 26095 birthdaylem2 26102 efrlim 26119 bcmono 26425 m1lgs 26536 chto1lb 26626 vmalogdivsum2 26686 selberg3lem1 26705 selberg4lem1 26708 selberg4 26709 selberg34r 26719 pntrlog2bndlem2 26726 pntrlog2bndlem4 26728 pntpbnd2 26735 pntibndlem2 26739 pntlemg 26746 nnproddivdvdsd 40009 dvrelogpow2b 40076 aks4d1p1p7 40082 irrapxlem5 40648 divdiv3d 42898 mccllem 43138 clim1fr1 43142 sinaover2ne0 43409 dvnprodlem2 43488 wallispi2lem1 43612 stirlinglem3 43617 stirlinglem4 43618 stirlinglem7 43621 stirlinglem15 43629 dirker2re 43633 dirkerdenne0 43634 dirkertrigeqlem2 43640 dirkertrigeqlem3 43641 dirkertrigeq 43642 dirkercncflem1 43644 dirkercncflem2 43645 dirkercncflem4 43647 fourierdlem56 43703 fourierdlem66 43713 sqwvfourb 43770 fouriersw 43772 itscnhlc0xyqsol 46111 |
Copyright terms: Public domain | W3C validator |