![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdiv1d | Structured version Visualization version GIF version |
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divdiv1d | ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | divdiv23d.5 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
6 | divdiv1 11907 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | |
7 | 1, 2, 3, 4, 5, 6 | syl122anc 1379 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 (class class class)co 7393 ℂcc 11090 0cc0 11092 · cmul 11097 / cdiv 11853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 |
This theorem is referenced by: discr 14185 hashf1 14400 bcfallfac 15970 eftlub 16034 tanval2 16058 sinhval 16079 sqrt2irrlem 16173 bitsp1 16354 4sqlem7 16859 4sqlem10 16862 uniioombl 25035 dvrec 25401 dvsincos 25427 dvcvx 25466 taylthlem2 25815 mcubic 26279 cubic2 26280 quart1lem 26287 quart1 26288 log2cnv 26376 log2tlbnd 26377 birthdaylem2 26384 efrlim 26401 bcmono 26707 m1lgs 26818 chto1lb 26908 vmalogdivsum2 26968 selberg3lem1 26987 selberg4lem1 26990 selberg4 26991 selberg34r 27001 pntrlog2bndlem2 27008 pntrlog2bndlem4 27010 pntpbnd2 27017 pntibndlem2 27021 pntlemg 27028 nnproddivdvdsd 40671 dvrelogpow2b 40738 aks4d1p1p7 40744 irrapxlem5 41335 divdiv3d 43842 mccllem 44086 clim1fr1 44090 sinaover2ne0 44357 dvnprodlem2 44436 wallispi2lem1 44560 stirlinglem3 44565 stirlinglem4 44566 stirlinglem7 44569 stirlinglem15 44577 dirker2re 44581 dirkerdenne0 44582 dirkertrigeqlem2 44588 dirkertrigeqlem3 44589 dirkertrigeq 44590 dirkercncflem1 44592 dirkercncflem2 44593 dirkercncflem4 44595 fourierdlem56 44651 fourierdlem66 44661 sqwvfourb 44718 fouriersw 44720 itscnhlc0xyqsol 47099 |
Copyright terms: Public domain | W3C validator |