MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv1d Structured version   Visualization version   GIF version

Theorem divdiv1d 11949
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuld.4 (𝜑𝐵 ≠ 0)
divdiv23d.5 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
divdiv1d (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Proof of Theorem divdiv1d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.4 . 2 (𝜑𝐵 ≠ 0)
4 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
5 divdiv23d.5 . 2 (𝜑𝐶 ≠ 0)
6 divdiv1 11853 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
71, 2, 3, 4, 5, 6syl122anc 1381 1 (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028   · cmul 11033   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by:  discr  14165  hashf1  14382  bcfallfac  15969  eftlub  16036  tanval2  16060  sinhval  16081  sqrt2irrlem  16175  bitsp1  16360  4sqlem7  16874  4sqlem10  16877  uniioombl  25506  dvrec  25875  dvsincos  25901  dvcvx  25941  taylthlem2  26298  taylthlem2OLD  26299  mcubic  26773  cubic2  26774  quart1lem  26781  quart1  26782  log2cnv  26870  log2tlbnd  26871  birthdaylem2  26878  efrlim  26895  efrlimOLD  26896  bcmono  27204  m1lgs  27315  chto1lb  27405  vmalogdivsum2  27465  selberg3lem1  27484  selberg4lem1  27487  selberg4  27488  selberg34r  27498  pntrlog2bndlem2  27505  pntrlog2bndlem4  27507  pntpbnd2  27514  pntibndlem2  27518  pntlemg  27525  quad3d  32706  nnproddivdvdsd  41973  dvrelogpow2b  42041  aks4d1p1p7  42047  bcled  42151  bcle2d  42152  irrapxlem5  42799  divdiv3d  45339  mccllem  45579  clim1fr1  45583  sinaover2ne0  45850  dvnprodlem2  45929  wallispi2lem1  46053  stirlinglem3  46058  stirlinglem4  46059  stirlinglem7  46062  stirlinglem15  46070  dirker2re  46074  dirkerdenne0  46075  dirkertrigeqlem2  46081  dirkertrigeqlem3  46082  dirkertrigeq  46083  dirkercncflem1  46085  dirkercncflem2  46086  dirkercncflem4  46088  fourierdlem56  46144  fourierdlem66  46154  sqwvfourb  46211  fouriersw  46213  itscnhlc0xyqsol  48751
  Copyright terms: Public domain W3C validator