| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdiv1d | Structured version Visualization version GIF version | ||
| Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divdiv1d | ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | divdiv23d.5 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 6 | divdiv1 11900 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1381 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: discr 14212 hashf1 14429 bcfallfac 16017 eftlub 16084 tanval2 16108 sinhval 16129 sqrt2irrlem 16223 bitsp1 16408 4sqlem7 16922 4sqlem10 16925 uniioombl 25497 dvrec 25866 dvsincos 25892 dvcvx 25932 taylthlem2 26289 taylthlem2OLD 26290 mcubic 26764 cubic2 26765 quart1lem 26772 quart1 26773 log2cnv 26861 log2tlbnd 26862 birthdaylem2 26869 efrlim 26886 efrlimOLD 26887 bcmono 27195 m1lgs 27306 chto1lb 27396 vmalogdivsum2 27456 selberg3lem1 27475 selberg4lem1 27478 selberg4 27479 selberg34r 27489 pntrlog2bndlem2 27496 pntrlog2bndlem4 27498 pntpbnd2 27505 pntibndlem2 27509 pntlemg 27516 quad3d 32680 nnproddivdvdsd 41995 dvrelogpow2b 42063 aks4d1p1p7 42069 bcled 42173 bcle2d 42174 irrapxlem5 42821 divdiv3d 45362 mccllem 45602 clim1fr1 45606 sinaover2ne0 45873 dvnprodlem2 45952 wallispi2lem1 46076 stirlinglem3 46081 stirlinglem4 46082 stirlinglem7 46085 stirlinglem15 46093 dirker2re 46097 dirkerdenne0 46098 dirkertrigeqlem2 46104 dirkertrigeqlem3 46105 dirkertrigeq 46106 dirkercncflem1 46108 dirkercncflem2 46109 dirkercncflem4 46111 fourierdlem56 46167 fourierdlem66 46177 sqwvfourb 46234 fouriersw 46236 itscnhlc0xyqsol 48758 |
| Copyright terms: Public domain | W3C validator |