| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdiv1d | Structured version Visualization version GIF version | ||
| Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| divdiv23d.5 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divdiv1d | ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | divdiv23d.5 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0) | |
| 6 | divdiv1 11839 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1381 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 · cmul 11018 / cdiv 11781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 |
| This theorem is referenced by: discr 14149 hashf1 14366 bcfallfac 15953 eftlub 16020 tanval2 16044 sinhval 16065 sqrt2irrlem 16159 bitsp1 16344 4sqlem7 16858 4sqlem10 16861 uniioombl 25518 dvrec 25887 dvsincos 25913 dvcvx 25953 taylthlem2 26310 taylthlem2OLD 26311 mcubic 26785 cubic2 26786 quart1lem 26793 quart1 26794 log2cnv 26882 log2tlbnd 26883 birthdaylem2 26890 efrlim 26907 efrlimOLD 26908 bcmono 27216 m1lgs 27327 chto1lb 27417 vmalogdivsum2 27477 selberg3lem1 27496 selberg4lem1 27499 selberg4 27500 selberg34r 27510 pntrlog2bndlem2 27517 pntrlog2bndlem4 27519 pntpbnd2 27526 pntibndlem2 27530 pntlemg 27537 quad3d 32737 nnproddivdvdsd 42113 dvrelogpow2b 42181 aks4d1p1p7 42187 bcled 42291 bcle2d 42292 irrapxlem5 42943 divdiv3d 45482 mccllem 45721 clim1fr1 45725 sinaover2ne0 45990 dvnprodlem2 46069 wallispi2lem1 46193 stirlinglem3 46198 stirlinglem4 46199 stirlinglem7 46202 stirlinglem15 46210 dirker2re 46214 dirkerdenne0 46215 dirkertrigeqlem2 46221 dirkertrigeqlem3 46222 dirkertrigeq 46223 dirkercncflem1 46225 dirkercncflem2 46226 dirkercncflem4 46228 fourierdlem56 46284 fourierdlem66 46294 sqwvfourb 46351 fouriersw 46353 itscnhlc0xyqsol 48890 |
| Copyright terms: Public domain | W3C validator |