MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv1d Structured version   Visualization version   GIF version

Theorem divdiv1d 11989
Description: Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuld.4 (𝜑𝐵 ≠ 0)
divdiv23d.5 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
divdiv1d (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Proof of Theorem divdiv1d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.4 . 2 (𝜑𝐵 ≠ 0)
4 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
5 divdiv23d.5 . 2 (𝜑𝐶 ≠ 0)
6 divdiv1 11893 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
71, 2, 3, 4, 5, 6syl122anc 1381 1 (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068   · cmul 11073   / cdiv 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836
This theorem is referenced by:  discr  14205  hashf1  14422  bcfallfac  16010  eftlub  16077  tanval2  16101  sinhval  16122  sqrt2irrlem  16216  bitsp1  16401  4sqlem7  16915  4sqlem10  16918  uniioombl  25490  dvrec  25859  dvsincos  25885  dvcvx  25925  taylthlem2  26282  taylthlem2OLD  26283  mcubic  26757  cubic2  26758  quart1lem  26765  quart1  26766  log2cnv  26854  log2tlbnd  26855  birthdaylem2  26862  efrlim  26879  efrlimOLD  26880  bcmono  27188  m1lgs  27299  chto1lb  27389  vmalogdivsum2  27449  selberg3lem1  27468  selberg4lem1  27471  selberg4  27472  selberg34r  27482  pntrlog2bndlem2  27489  pntrlog2bndlem4  27491  pntpbnd2  27498  pntibndlem2  27502  pntlemg  27509  quad3d  32673  nnproddivdvdsd  41988  dvrelogpow2b  42056  aks4d1p1p7  42062  bcled  42166  bcle2d  42167  irrapxlem5  42814  divdiv3d  45355  mccllem  45595  clim1fr1  45599  sinaover2ne0  45866  dvnprodlem2  45945  wallispi2lem1  46069  stirlinglem3  46074  stirlinglem4  46075  stirlinglem7  46078  stirlinglem15  46086  dirker2re  46090  dirkerdenne0  46091  dirkertrigeqlem2  46097  dirkertrigeqlem3  46098  dirkertrigeq  46099  dirkercncflem1  46101  dirkercncflem2  46102  dirkercncflem4  46104  fourierdlem56  46160  fourierdlem66  46170  sqwvfourb  46227  fouriersw  46229  itscnhlc0xyqsol  48754
  Copyright terms: Public domain W3C validator