MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4t2lthalf Structured version   Visualization version   GIF version

Theorem flodddiv4t2lthalf 16329
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
flodddiv4t2lthalf ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 16328 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
2 zre 12475 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 4re 12212 . . . . . . . . 9 4 ∈ ℝ
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ∈ ℝ)
5 4ne0 12236 . . . . . . . . 9 4 ≠ 0
65a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ≠ 0)
72, 4, 6redivcld 11952 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
87flcld 13702 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
98zred 12580 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
10 2rp 12898 . . . . . 6 2 ∈ ℝ+
1110a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
129, 7, 11ltmul1d 12978 . . . 4 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
1312adantr 480 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
141, 13mpbid 232 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))
15 zcn 12476 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615halfcld 12369 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ)
17 2cnd 12206 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
18 2ne0 12232 . . . . . 6 2 ≠ 0
1918a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
2016, 17, 19divcan1d 11901 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2))
21 2cnne0 12333 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
23 divdiv1 11835 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2415, 22, 22, 23syl3anc 1373 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
25 2t2e4 12287 . . . . . . . 8 (2 · 2) = 4
2625a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 2) = 4)
2726oveq2d 7365 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4))
2824, 27eqtrd 2764 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4))
2928oveq1d 7364 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2))
3020, 29eqtr3d 2766 . . 3 (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2))
3130adantr 480 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2))
3214, 31breqtrrd 5120 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014   < clt 11149   / cdiv 11777  2c2 12183  4c4 12185  cz 12471  +crp 12893  cfl 13694  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-dvds 16164
This theorem is referenced by:  gausslemma2dlem0e  27269
  Copyright terms: Public domain W3C validator