MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4t2lthalf Structured version   Visualization version   GIF version

Theorem flodddiv4t2lthalf 16216
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
flodddiv4t2lthalf ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 16215 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
2 zre 12416 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 4re 12150 . . . . . . . . 9 4 ∈ ℝ
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ∈ ℝ)
5 4ne0 12174 . . . . . . . . 9 4 ≠ 0
65a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ≠ 0)
72, 4, 6redivcld 11896 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
87flcld 13611 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
98zred 12519 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
10 2rp 12828 . . . . . 6 2 ∈ ℝ+
1110a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
129, 7, 11ltmul1d 12906 . . . 4 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
1312adantr 481 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
141, 13mpbid 231 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))
15 zcn 12417 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615halfcld 12311 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ)
17 2cnd 12144 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
18 2ne0 12170 . . . . . 6 2 ≠ 0
1918a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
2016, 17, 19divcan1d 11845 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2))
21 2cnne0 12276 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
23 divdiv1 11779 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2415, 22, 22, 23syl3anc 1370 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
25 2t2e4 12230 . . . . . . . 8 (2 · 2) = 4
2625a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 2) = 4)
2726oveq2d 7345 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4))
2824, 27eqtrd 2776 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4))
2928oveq1d 7344 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2))
3020, 29eqtr3d 2778 . . 3 (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2))
3130adantr 481 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2))
3214, 31breqtrrd 5117 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5089  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964   · cmul 10969   < clt 11102   / cdiv 11725  2c2 12121  4c4 12123  cz 12412  +crp 12823  cfl 13603  cdvds 16054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-sup 9291  df-inf 9292  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-fl 13605  df-dvds 16055
This theorem is referenced by:  gausslemma2dlem0e  26606
  Copyright terms: Public domain W3C validator