MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4t2lthalf Structured version   Visualization version   GIF version

Theorem flodddiv4t2lthalf 16125
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
flodddiv4t2lthalf ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 16124 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
2 zre 12323 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 4re 12057 . . . . . . . . 9 4 ∈ ℝ
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ∈ ℝ)
5 4ne0 12081 . . . . . . . . 9 4 ≠ 0
65a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ≠ 0)
72, 4, 6redivcld 11803 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
87flcld 13518 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
98zred 12426 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
10 2rp 12735 . . . . . 6 2 ∈ ℝ+
1110a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
129, 7, 11ltmul1d 12813 . . . 4 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
1312adantr 481 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
141, 13mpbid 231 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))
15 zcn 12324 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615halfcld 12218 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ)
17 2cnd 12051 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
18 2ne0 12077 . . . . . 6 2 ≠ 0
1918a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
2016, 17, 19divcan1d 11752 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2))
21 2cnne0 12183 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
23 divdiv1 11686 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2415, 22, 22, 23syl3anc 1370 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
25 2t2e4 12137 . . . . . . . 8 (2 · 2) = 4
2625a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 2) = 4)
2726oveq2d 7291 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4))
2824, 27eqtrd 2778 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4))
2928oveq1d 7290 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2))
3020, 29eqtr3d 2780 . . 3 (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2))
3130adantr 481 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2))
3214, 31breqtrrd 5102 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009   / cdiv 11632  2c2 12028  4c4 12030  cz 12319  +crp 12730  cfl 13510  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-dvds 15964
This theorem is referenced by:  gausslemma2dlem0e  26508
  Copyright terms: Public domain W3C validator