| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flodddiv4t2lthalf | Structured version Visualization version GIF version | ||
| Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt 16328 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
| 2 | zre 12475 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 3 | 4re 12212 | . . . . . . . . 9 ⊢ 4 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 4 ∈ ℝ) |
| 5 | 4ne0 12236 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 4 ≠ 0) |
| 7 | 2, 4, 6 | redivcld 11952 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
| 8 | 7 | flcld 13702 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 9 | 8 | zred 12580 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 10 | 2rp 12898 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 12 | 9, 7, 11 | ltmul1d 12978 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
| 15 | zcn 12476 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 16 | 15 | halfcld 12369 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
| 17 | 2cnd 12206 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 18 | 2ne0 12232 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 20 | 16, 17, 19 | divcan1d 11901 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
| 21 | 2cnne0 12333 | . . . . . . . 8 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 23 | divdiv1 11835 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) | |
| 24 | 15, 22, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 25 | 2t2e4 12287 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
| 27 | 26 | oveq2d 7365 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
| 28 | 24, 27 | eqtrd 2764 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
| 29 | 28 | oveq1d 7364 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
| 30 | 20, 29 | eqtr3d 2766 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 31 | 30 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 32 | 14, 31 | breqtrrd 5120 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 · cmul 11014 < clt 11149 / cdiv 11777 2c2 12183 4c4 12185 ℤcz 12471 ℝ+crp 12893 ⌊cfl 13694 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fl 13696 df-dvds 16164 |
| This theorem is referenced by: gausslemma2dlem0e 27269 |
| Copyright terms: Public domain | W3C validator |