| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flodddiv4t2lthalf | Structured version Visualization version GIF version | ||
| Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt 16328 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
| 2 | zre 12472 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 3 | 4re 12209 | . . . . . . . . 9 ⊢ 4 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 4 ∈ ℝ) |
| 5 | 4ne0 12233 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 4 ≠ 0) |
| 7 | 2, 4, 6 | redivcld 11949 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
| 8 | 7 | flcld 13702 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 9 | 8 | zred 12577 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 10 | 2rp 12895 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ+) |
| 12 | 9, 7, 11 | ltmul1d 12975 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
| 15 | zcn 12473 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 16 | 15 | halfcld 12366 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
| 17 | 2cnd 12203 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 18 | 2ne0 12229 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ≠ 0) |
| 20 | 16, 17, 19 | divcan1d 11898 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
| 21 | 2cnne0 12330 | . . . . . . . 8 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 23 | divdiv1 11832 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) | |
| 24 | 15, 22, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 25 | 2t2e4 12284 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
| 27 | 26 | oveq2d 7362 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
| 28 | 24, 27 | eqtrd 2766 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
| 29 | 28 | oveq1d 7361 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
| 30 | 20, 29 | eqtr3d 2768 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 31 | 30 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 32 | 14, 31 | breqtrrd 5117 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 · cmul 11011 < clt 11146 / cdiv 11774 2c2 12180 4c4 12182 ℤcz 12468 ℝ+crp 12890 ⌊cfl 13694 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-dvds 16164 |
| This theorem is referenced by: gausslemma2dlem0e 27298 |
| Copyright terms: Public domain | W3C validator |