![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgnn | Structured version Visualization version GIF version |
Description: Lemma for tgoldbachgtd 33332. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
Ref | Expression |
---|---|
tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
Ref | Expression |
---|---|
tgoldbachgnn | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
2 | tgoldbachgtda.o | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
3 | 1, 2 | eleqtrdi 2844 | . . 3 ⊢ (𝜑 → 𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}) |
4 | elrabi 3640 | . . 3 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑁 ∈ ℤ) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | 1red 11161 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
7 | 10nn0 12641 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
8 | 7 | nn0rei 12429 | . . . . 5 ⊢ ;10 ∈ ℝ |
9 | 2nn0 12435 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 7nn0 12440 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
11 | 9, 10 | deccl 12638 | . . . . 5 ⊢ ;27 ∈ ℕ0 |
12 | reexpcl 13990 | . . . . 5 ⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0) → (;10↑;27) ∈ ℝ) | |
13 | 8, 11, 12 | mp2an 691 | . . . 4 ⊢ (;10↑;27) ∈ ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (;10↑;27) ∈ ℝ) |
15 | 5 | zred 12612 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
16 | 1re 11160 | . . . . . 6 ⊢ 1 ∈ ℝ | |
17 | 1lt10 12762 | . . . . . 6 ⊢ 1 < ;10 | |
18 | 16, 8, 17 | ltleii 11283 | . . . . 5 ⊢ 1 ≤ ;10 |
19 | expge1 14011 | . . . . 5 ⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0 ∧ 1 ≤ ;10) → 1 ≤ (;10↑;27)) | |
20 | 8, 11, 18, 19 | mp3an 1462 | . . . 4 ⊢ 1 ≤ (;10↑;27) |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ≤ (;10↑;27)) |
22 | tgoldbachgtda.0 | . . 3 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
23 | 6, 14, 15, 21, 22 | letrd 11317 | . 2 ⊢ (𝜑 → 1 ≤ 𝑁) |
24 | elnnz1 12534 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | |
25 | 5, 23, 24 | sylanbrc 584 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3406 class class class wbr 5106 (class class class)co 7358 ℝcr 11055 0cc0 11056 1c1 11057 ≤ cle 11195 ℕcn 12158 2c2 12213 7c7 12218 ℕ0cn0 12418 ℤcz 12504 ;cdc 12623 ↑cexp 13973 ∥ cdvds 16141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-seq 13913 df-exp 13974 |
This theorem is referenced by: tgoldbachgtde 33330 tgoldbachgtda 33331 |
Copyright terms: Public domain | W3C validator |