MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsubd Structured version   Visualization version   GIF version

Theorem expsubd 13375
Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
sqrecd.1 (𝜑𝐴 ≠ 0)
expclzd.3 (𝜑𝑁 ∈ ℤ)
expsubd.3 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
expsubd (𝜑 → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))

Proof of Theorem expsubd
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sqrecd.1 . 2 (𝜑𝐴 ≠ 0)
3 expsubd.3 . 2 (𝜑𝑀 ∈ ℤ)
4 expclzd.3 . 2 (𝜑𝑁 ∈ ℤ)
5 expsub 13331 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
61, 2, 3, 4, 5syl22anc 835 1 (𝜑 → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  wne 2986  (class class class)co 7023  cc 10388  0cc0 10390  cmin 10723   / cdiv 11151  cz 11835  cexp 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-seq 13224  df-exp 13284
This theorem is referenced by:  bitsshft  15661  pcadd  16058  psgnunilem4  18360  dyaddisjlem  23883  dvexp3  24262  plyeq0lem  24487  aareccl  24602  aalioulem1  24608  root1cj  25022  cxpeq  25023  signsplypnf  31433  fltnlta  38793  radcnvrat  40205  wallispi2lem1  41920  stirlinglem8  41930  elaa2lem  42082  pw2m1lepw2m1  44078
  Copyright terms: Public domain W3C validator