MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Structured version   Visualization version   GIF version

Theorem aalioulem1 24524
Description: Lemma for aaliou 24530. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem1.b (𝜑𝑋 ∈ ℤ)
aalioulem1.c (𝜑𝑌 ∈ ℕ)
Assertion
Ref Expression
aalioulem1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)

Proof of Theorem aalioulem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5 (𝜑𝐹 ∈ (Poly‘ℤ))
2 aalioulem1.b . . . . . . 7 (𝜑𝑋 ∈ ℤ)
32zcnd 11835 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4 aalioulem1.c . . . . . . 7 (𝜑𝑌 ∈ ℕ)
54nncnd 11392 . . . . . 6 (𝜑𝑌 ∈ ℂ)
64nnne0d 11425 . . . . . 6 (𝜑𝑌 ≠ 0)
73, 5, 6divcld 11151 . . . . 5 (𝜑 → (𝑋 / 𝑌) ∈ ℂ)
8 eqid 2778 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
9 eqid 2778 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
108, 9coeid2 24432 . . . . 5 ((𝐹 ∈ (Poly‘ℤ) ∧ (𝑋 / 𝑌) ∈ ℂ) → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
111, 7, 10syl2anc 579 . . . 4 (𝜑 → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
1211oveq1d 6937 . . 3 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
13 fzfid 13091 . . . 4 (𝜑 → (0...(deg‘𝐹)) ∈ Fin)
14 dgrcl 24426 . . . . . 6 (𝐹 ∈ (Poly‘ℤ) → (deg‘𝐹) ∈ ℕ0)
151, 14syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
165, 15expcld 13327 . . . 4 (𝜑 → (𝑌↑(deg‘𝐹)) ∈ ℂ)
17 0z 11739 . . . . . . . 8 0 ∈ ℤ
188coef2 24424 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐹):ℕ0⟶ℤ)
191, 17, 18sylancl 580 . . . . . . 7 (𝜑 → (coeff‘𝐹):ℕ0⟶ℤ)
20 elfznn0 12751 . . . . . . 7 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℕ0)
21 ffvelrn 6621 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℤ ∧ 𝑎 ∈ ℕ0) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2219, 20, 21syl2an 589 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2322zcnd 11835 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℂ)
24 expcl 13196 . . . . . 6 (((𝑋 / 𝑌) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
257, 20, 24syl2an 589 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
2623, 25mulcld 10397 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) ∈ ℂ)
2713, 16, 26fsummulc1 14921 . . 3 (𝜑 → (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
2812, 27eqtrd 2814 . 2 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
295adantr 474 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℂ)
3015adantr 474 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
3129, 30expcld 13327 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑(deg‘𝐹)) ∈ ℂ)
3223, 25, 31mulassd 10400 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))))
332adantr 474 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℤ)
3433zcnd 11835 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℂ)
356adantr 474 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ≠ 0)
3620adantl 475 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℕ0)
3734, 29, 35, 36expdivd 13341 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) = ((𝑋𝑎) / (𝑌𝑎)))
3837oveq1d 6937 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))))
3934, 36expcld 13327 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℂ)
40 nnexpcl 13191 . . . . . . . . . 10 ((𝑌 ∈ ℕ ∧ 𝑎 ∈ ℕ0) → (𝑌𝑎) ∈ ℕ)
414, 20, 40syl2an 589 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℕ)
4241nncnd 11392 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℂ)
4341nnne0d 11425 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ≠ 0)
4439, 42, 31, 43div13d 11175 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
4538, 44eqtrd 2814 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
46 elfzelz 12659 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℤ)
4746adantl 475 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℤ)
4830nn0zd 11832 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℤ)
4929, 35, 47, 48expsubd 13338 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) = ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)))
504adantr 474 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℕ)
5150nnzd 11833 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℤ)
52 fznn0sub 12690 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
5352adantl 475 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
54 zexpcl 13193 . . . . . . . . 9 ((𝑌 ∈ ℤ ∧ ((deg‘𝐹) − 𝑎) ∈ ℕ0) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5551, 53, 54syl2anc 579 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5649, 55eqeltrrd 2860 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) ∈ ℤ)
57 zexpcl 13193 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑎 ∈ ℕ0) → (𝑋𝑎) ∈ ℤ)
582, 20, 57syl2an 589 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℤ)
5956, 58zmulcld 11840 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)) ∈ ℤ)
6045, 59eqeltrd 2859 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6122, 60zmulcld 11840 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))) ∈ ℤ)
6232, 61eqeltrd 2859 . . 3 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6313, 62fsumzcl 14873 . 2 (𝜑 → Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6428, 63eqeltrd 2859 1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272   · cmul 10277  cmin 10606   / cdiv 11032  cn 11374  0cn0 11642  cz 11728  ...cfz 12643  cexp 13178  Σcsu 14824  Polycply 24377  coeffccoe 24379  degcdgr 24380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-coe 24383  df-dgr 24384
This theorem is referenced by:  aalioulem4  24527
  Copyright terms: Public domain W3C validator