MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Structured version   Visualization version   GIF version

Theorem aalioulem1 26216
Description: Lemma for aaliou 26222. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem1.b (𝜑𝑋 ∈ ℤ)
aalioulem1.c (𝜑𝑌 ∈ ℕ)
Assertion
Ref Expression
aalioulem1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)

Proof of Theorem aalioulem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5 (𝜑𝐹 ∈ (Poly‘ℤ))
2 aalioulem1.b . . . . . . 7 (𝜑𝑋 ∈ ℤ)
32zcnd 12615 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4 aalioulem1.c . . . . . . 7 (𝜑𝑌 ∈ ℕ)
54nncnd 12178 . . . . . 6 (𝜑𝑌 ∈ ℂ)
64nnne0d 12212 . . . . . 6 (𝜑𝑌 ≠ 0)
73, 5, 6divcld 11934 . . . . 5 (𝜑 → (𝑋 / 𝑌) ∈ ℂ)
8 eqid 2729 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
9 eqid 2729 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
108, 9coeid2 26120 . . . . 5 ((𝐹 ∈ (Poly‘ℤ) ∧ (𝑋 / 𝑌) ∈ ℂ) → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
111, 7, 10syl2anc 584 . . . 4 (𝜑 → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
1211oveq1d 7384 . . 3 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
13 fzfid 13914 . . . 4 (𝜑 → (0...(deg‘𝐹)) ∈ Fin)
14 dgrcl 26114 . . . . . 6 (𝐹 ∈ (Poly‘ℤ) → (deg‘𝐹) ∈ ℕ0)
151, 14syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
165, 15expcld 14087 . . . 4 (𝜑 → (𝑌↑(deg‘𝐹)) ∈ ℂ)
17 0z 12516 . . . . . . . 8 0 ∈ ℤ
188coef2 26112 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐹):ℕ0⟶ℤ)
191, 17, 18sylancl 586 . . . . . . 7 (𝜑 → (coeff‘𝐹):ℕ0⟶ℤ)
20 elfznn0 13557 . . . . . . 7 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℕ0)
21 ffvelcdm 7035 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℤ ∧ 𝑎 ∈ ℕ0) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2219, 20, 21syl2an 596 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2322zcnd 12615 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℂ)
24 expcl 14020 . . . . . 6 (((𝑋 / 𝑌) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
257, 20, 24syl2an 596 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
2623, 25mulcld 11170 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) ∈ ℂ)
2713, 16, 26fsummulc1 15727 . . 3 (𝜑 → (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
2812, 27eqtrd 2764 . 2 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
295adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℂ)
3015adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
3129, 30expcld 14087 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑(deg‘𝐹)) ∈ ℂ)
3223, 25, 31mulassd 11173 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))))
332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℤ)
3433zcnd 12615 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℂ)
356adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ≠ 0)
3620adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℕ0)
3734, 29, 35, 36expdivd 14101 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) = ((𝑋𝑎) / (𝑌𝑎)))
3837oveq1d 7384 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))))
3934, 36expcld 14087 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℂ)
40 nnexpcl 14015 . . . . . . . . . 10 ((𝑌 ∈ ℕ ∧ 𝑎 ∈ ℕ0) → (𝑌𝑎) ∈ ℕ)
414, 20, 40syl2an 596 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℕ)
4241nncnd 12178 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℂ)
4341nnne0d 12212 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ≠ 0)
4439, 42, 31, 43div13d 11958 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
4538, 44eqtrd 2764 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
46 elfzelz 13461 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℤ)
4746adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℤ)
4830nn0zd 12531 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℤ)
4929, 35, 47, 48expsubd 14098 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) = ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)))
504adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℕ)
5150nnzd 12532 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℤ)
52 fznn0sub 13493 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
5352adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
54 zexpcl 14017 . . . . . . . . 9 ((𝑌 ∈ ℤ ∧ ((deg‘𝐹) − 𝑎) ∈ ℕ0) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5551, 53, 54syl2anc 584 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5649, 55eqeltrrd 2829 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) ∈ ℤ)
57 zexpcl 14017 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑎 ∈ ℕ0) → (𝑋𝑎) ∈ ℤ)
582, 20, 57syl2an 596 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℤ)
5956, 58zmulcld 12620 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)) ∈ ℤ)
6045, 59eqeltrd 2828 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6122, 60zmulcld 12620 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))) ∈ ℤ)
6232, 61eqeltrd 2828 . . 3 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6313, 62fsumzcl 15677 . 2 (𝜑 → Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6428, 63eqeltrd 2828 1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cexp 14002  Σcsu 15628  Polycply 26065  coeffccoe 26067  degcdgr 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25547  df-ply 26069  df-coe 26071  df-dgr 26072
This theorem is referenced by:  aalioulem4  26219
  Copyright terms: Public domain W3C validator