MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Structured version   Visualization version   GIF version

Theorem aalioulem1 26267
Description: Lemma for aaliou 26273. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem1.b (𝜑𝑋 ∈ ℤ)
aalioulem1.c (𝜑𝑌 ∈ ℕ)
Assertion
Ref Expression
aalioulem1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)

Proof of Theorem aalioulem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5 (𝜑𝐹 ∈ (Poly‘ℤ))
2 aalioulem1.b . . . . . . 7 (𝜑𝑋 ∈ ℤ)
32zcnd 12578 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4 aalioulem1.c . . . . . . 7 (𝜑𝑌 ∈ ℕ)
54nncnd 12141 . . . . . 6 (𝜑𝑌 ∈ ℂ)
64nnne0d 12175 . . . . . 6 (𝜑𝑌 ≠ 0)
73, 5, 6divcld 11897 . . . . 5 (𝜑 → (𝑋 / 𝑌) ∈ ℂ)
8 eqid 2731 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
9 eqid 2731 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
108, 9coeid2 26171 . . . . 5 ((𝐹 ∈ (Poly‘ℤ) ∧ (𝑋 / 𝑌) ∈ ℂ) → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
111, 7, 10syl2anc 584 . . . 4 (𝜑 → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
1211oveq1d 7361 . . 3 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
13 fzfid 13880 . . . 4 (𝜑 → (0...(deg‘𝐹)) ∈ Fin)
14 dgrcl 26165 . . . . . 6 (𝐹 ∈ (Poly‘ℤ) → (deg‘𝐹) ∈ ℕ0)
151, 14syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
165, 15expcld 14053 . . . 4 (𝜑 → (𝑌↑(deg‘𝐹)) ∈ ℂ)
17 0z 12479 . . . . . . . 8 0 ∈ ℤ
188coef2 26163 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐹):ℕ0⟶ℤ)
191, 17, 18sylancl 586 . . . . . . 7 (𝜑 → (coeff‘𝐹):ℕ0⟶ℤ)
20 elfznn0 13520 . . . . . . 7 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℕ0)
21 ffvelcdm 7014 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℤ ∧ 𝑎 ∈ ℕ0) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2219, 20, 21syl2an 596 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2322zcnd 12578 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℂ)
24 expcl 13986 . . . . . 6 (((𝑋 / 𝑌) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
257, 20, 24syl2an 596 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
2623, 25mulcld 11132 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) ∈ ℂ)
2713, 16, 26fsummulc1 15692 . . 3 (𝜑 → (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
2812, 27eqtrd 2766 . 2 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
295adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℂ)
3015adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
3129, 30expcld 14053 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑(deg‘𝐹)) ∈ ℂ)
3223, 25, 31mulassd 11135 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))))
332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℤ)
3433zcnd 12578 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℂ)
356adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ≠ 0)
3620adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℕ0)
3734, 29, 35, 36expdivd 14067 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) = ((𝑋𝑎) / (𝑌𝑎)))
3837oveq1d 7361 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))))
3934, 36expcld 14053 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℂ)
40 nnexpcl 13981 . . . . . . . . . 10 ((𝑌 ∈ ℕ ∧ 𝑎 ∈ ℕ0) → (𝑌𝑎) ∈ ℕ)
414, 20, 40syl2an 596 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℕ)
4241nncnd 12141 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℂ)
4341nnne0d 12175 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ≠ 0)
4439, 42, 31, 43div13d 11921 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
4538, 44eqtrd 2766 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
46 elfzelz 13424 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℤ)
4746adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℤ)
4830nn0zd 12494 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℤ)
4929, 35, 47, 48expsubd 14064 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) = ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)))
504adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℕ)
5150nnzd 12495 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℤ)
52 fznn0sub 13456 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
5352adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
54 zexpcl 13983 . . . . . . . . 9 ((𝑌 ∈ ℤ ∧ ((deg‘𝐹) − 𝑎) ∈ ℕ0) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5551, 53, 54syl2anc 584 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5649, 55eqeltrrd 2832 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) ∈ ℤ)
57 zexpcl 13983 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑎 ∈ ℕ0) → (𝑋𝑎) ∈ ℤ)
582, 20, 57syl2an 596 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℤ)
5956, 58zmulcld 12583 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)) ∈ ℤ)
6045, 59eqeltrd 2831 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6122, 60zmulcld 12583 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))) ∈ ℤ)
6232, 61eqeltrd 2831 . . 3 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6313, 62fsumzcl 15642 . 2 (𝜑 → Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6428, 63eqeltrd 2831 1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   · cmul 11011  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  Σcsu 15593  Polycply 26116  coeffccoe 26118  degcdgr 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25598  df-ply 26120  df-coe 26122  df-dgr 26123
This theorem is referenced by:  aalioulem4  26270
  Copyright terms: Public domain W3C validator