MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1cj Structured version   Visualization version   GIF version

Theorem root1cj 26641
Description: Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
root1cj ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))

Proof of Theorem root1cj
StepHypRef Expression
1 neg1cn 12327 . . . 4 -1 ∈ ℂ
2 2re 12287 . . . . . 6 2 ∈ ℝ
3 simpl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
4 nndivre 12254 . . . . . 6 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
52, 3, 4sylancr 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
65recnd 11243 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
7 cxpcl 26558 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 586 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
10 neg1ne0 12329 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
129, 11, 6cxpne0d 26597 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
14 nnz 12580 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1514adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
168, 12, 13, 15expsubd 14124 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)) = (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
17 root1id 26639 . . . 4 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1817adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1918oveq1d 7419 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
208, 12, 13expclzd 14118 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ)
218, 12, 13expne0d 14119 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0)
22 recval 15272 . . . 4 ((((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ ∧ ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
2320, 21, 22syl2anc 583 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
24 absexpz 15255 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0 ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
258, 12, 13, 24syl3anc 1368 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
26 abscxp2 26577 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℝ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
271, 5, 26sylancr 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
28 ax-1cn 11167 . . . . . . . . . . . . 13 1 ∈ ℂ
2928absnegi 15350 . . . . . . . . . . . 12 (abs‘-1) = (abs‘1)
30 abs1 15247 . . . . . . . . . . . 12 (abs‘1) = 1
3129, 30eqtri 2754 . . . . . . . . . . 11 (abs‘-1) = 1
3231oveq1i 7414 . . . . . . . . . 10 ((abs‘-1)↑𝑐(2 / 𝑁)) = (1↑𝑐(2 / 𝑁))
3327, 32eqtrdi 2782 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = (1↑𝑐(2 / 𝑁)))
3461cxpd 26591 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝑐(2 / 𝑁)) = 1)
3533, 34eqtrd 2766 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = 1)
3635oveq1d 7419 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾) = (1↑𝐾))
37 1exp 14059 . . . . . . . 8 (𝐾 ∈ ℤ → (1↑𝐾) = 1)
3837adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝐾) = 1)
3925, 36, 383eqtrd 2770 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = 1)
4039oveq1d 7419 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = (1↑2))
41 sq1 14161 . . . . 5 (1↑2) = 1
4240, 41eqtrdi 2782 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = 1)
4342oveq2d 7420 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1))
4420cjcld 15146 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) ∈ ℂ)
4544div1d 11983 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4623, 43, 453eqtrd 2770 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4716, 19, 463eqtrrd 2771 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  cfv 6536  (class class class)co 7404  cc 11107  cr 11108  0cc0 11109  1c1 11110  cmin 11445  -cneg 11446   / cdiv 11872  cn 12213  2c2 12268  cz 12559  cexp 14029  ccj 15046  abscabs 15184  𝑐ccxp 26439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-q 12934  df-rp 12978  df-xneg 13095  df-xadd 13096  df-xmul 13097  df-ioo 13331  df-ioc 13332  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-fl 13760  df-mod 13838  df-seq 13970  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-shft 15017  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-limsup 15418  df-clim 15435  df-rlim 15436  df-sum 15636  df-ef 16014  df-sin 16016  df-cos 16017  df-pi 16019  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-starv 17218  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-unif 17226  df-hom 17227  df-cco 17228  df-rest 17374  df-topn 17375  df-0g 17393  df-gsum 17394  df-topgen 17395  df-pt 17396  df-prds 17399  df-xrs 17454  df-qtop 17459  df-imas 17460  df-xps 17462  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-submnd 18711  df-mulg 18993  df-cntz 19230  df-cmn 19699  df-psmet 21227  df-xmet 21228  df-met 21229  df-bl 21230  df-mopn 21231  df-fbas 21232  df-fg 21233  df-cnfld 21236  df-top 22746  df-topon 22763  df-topsp 22785  df-bases 22799  df-cld 22873  df-ntr 22874  df-cls 22875  df-nei 22952  df-lp 22990  df-perf 22991  df-cn 23081  df-cnp 23082  df-haus 23169  df-tx 23416  df-hmeo 23609  df-fil 23700  df-fm 23792  df-flim 23793  df-flf 23794  df-xms 24176  df-ms 24177  df-tms 24178  df-cncf 24748  df-limc 25745  df-dv 25746  df-log 26440  df-cxp 26441
This theorem is referenced by:  1cubrlem  26723
  Copyright terms: Public domain W3C validator