![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > root1cj | Structured version Visualization version GIF version |
Description: Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁 − 𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
root1cj | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11472 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | 2re 11425 | . . . . . 6 ⊢ 2 ∈ ℝ | |
3 | simpl 476 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ) | |
4 | nndivre 11392 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ) | |
5 | 2, 3, 4 | sylancr 583 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ) |
6 | 5 | recnd 10385 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ) |
7 | cxpcl 24819 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ) | |
8 | 1, 6, 7 | sylancr 583 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ) |
9 | 1 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ) |
10 | neg1ne0 11474 | . . . . 5 ⊢ -1 ≠ 0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0) |
12 | 9, 11, 6 | cxpne0d 24858 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0) |
13 | simpr 479 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
14 | nnz 11727 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
15 | 14 | adantr 474 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
16 | 8, 12, 13, 15 | expsubd 13313 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾)) = (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾))) |
17 | root1id 24897 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1) | |
18 | 17 | adantr 474 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1) |
19 | 18 | oveq1d 6920 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾))) |
20 | 8, 12, 13 | expclzd 13307 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ) |
21 | 8, 12, 13 | expne0d 13308 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) |
22 | recval 14439 | . . . 4 ⊢ ((((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ ∧ ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2))) | |
23 | 20, 21, 22 | syl2anc 581 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2))) |
24 | absexpz 14422 | . . . . . . . 8 ⊢ (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0 ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾)) | |
25 | 8, 12, 13, 24 | syl3anc 1496 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾)) |
26 | abscxp2 24838 | . . . . . . . . . . 11 ⊢ ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℝ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁))) | |
27 | 1, 5, 26 | sylancr 583 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁))) |
28 | ax-1cn 10310 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
29 | 28 | absnegi 14516 | . . . . . . . . . . . 12 ⊢ (abs‘-1) = (abs‘1) |
30 | abs1 14414 | . . . . . . . . . . . 12 ⊢ (abs‘1) = 1 | |
31 | 29, 30 | eqtri 2849 | . . . . . . . . . . 11 ⊢ (abs‘-1) = 1 |
32 | 31 | oveq1i 6915 | . . . . . . . . . 10 ⊢ ((abs‘-1)↑𝑐(2 / 𝑁)) = (1↑𝑐(2 / 𝑁)) |
33 | 27, 32 | syl6eq 2877 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = (1↑𝑐(2 / 𝑁))) |
34 | 6 | 1cxpd 24852 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝑐(2 / 𝑁)) = 1) |
35 | 33, 34 | eqtrd 2861 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = 1) |
36 | 35 | oveq1d 6920 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾) = (1↑𝐾)) |
37 | 1exp 13183 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (1↑𝐾) = 1) | |
38 | 37 | adantl 475 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝐾) = 1) |
39 | 25, 36, 38 | 3eqtrd 2865 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = 1) |
40 | 39 | oveq1d 6920 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = (1↑2)) |
41 | sq1 13252 | . . . . 5 ⊢ (1↑2) = 1 | |
42 | 40, 41 | syl6eq 2877 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = 1) |
43 | 42 | oveq2d 6921 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1)) |
44 | 20 | cjcld 14313 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) ∈ ℂ) |
45 | 44 | div1d 11119 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾))) |
46 | 23, 43, 45 | 3eqtrd 2865 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾))) |
47 | 16, 19, 46 | 3eqtrrd 2866 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 ℝcr 10251 0cc0 10252 1c1 10253 − cmin 10585 -cneg 10586 / cdiv 11009 ℕcn 11350 2c2 11406 ℤcz 11704 ↑cexp 13154 ∗ccj 14213 abscabs 14351 ↑𝑐ccxp 24701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 ax-mulf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-fi 8586 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-z 11705 df-dec 11822 df-uz 11969 df-q 12072 df-rp 12113 df-xneg 12232 df-xadd 12233 df-xmul 12234 df-ioo 12467 df-ioc 12468 df-ico 12469 df-icc 12470 df-fz 12620 df-fzo 12761 df-fl 12888 df-mod 12964 df-seq 13096 df-exp 13155 df-fac 13354 df-bc 13383 df-hash 13411 df-shft 14184 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-limsup 14579 df-clim 14596 df-rlim 14597 df-sum 14794 df-ef 15170 df-sin 15172 df-cos 15173 df-pi 15175 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-hom 16329 df-cco 16330 df-rest 16436 df-topn 16437 df-0g 16455 df-gsum 16456 df-topgen 16457 df-pt 16458 df-prds 16461 df-xrs 16515 df-qtop 16520 df-imas 16521 df-xps 16523 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-mulg 17895 df-cntz 18100 df-cmn 18548 df-psmet 20098 df-xmet 20099 df-met 20100 df-bl 20101 df-mopn 20102 df-fbas 20103 df-fg 20104 df-cnfld 20107 df-top 21069 df-topon 21086 df-topsp 21108 df-bases 21121 df-cld 21194 df-ntr 21195 df-cls 21196 df-nei 21273 df-lp 21311 df-perf 21312 df-cn 21402 df-cnp 21403 df-haus 21490 df-tx 21736 df-hmeo 21929 df-fil 22020 df-fm 22112 df-flim 22113 df-flf 22114 df-xms 22495 df-ms 22496 df-tms 22497 df-cncf 23051 df-limc 24029 df-dv 24030 df-log 24702 df-cxp 24703 |
This theorem is referenced by: 1cubrlem 24981 |
Copyright terms: Public domain | W3C validator |