MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1cj Structured version   Visualization version   GIF version

Theorem root1cj 26799
Description: Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
root1cj ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))

Proof of Theorem root1cj
StepHypRef Expression
1 neg1cn 12380 . . . 4 -1 ∈ ℂ
2 2re 12340 . . . . . 6 2 ∈ ℝ
3 simpl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
4 nndivre 12307 . . . . . 6 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
52, 3, 4sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
65recnd 11289 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
7 cxpcl 26716 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 587 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
10 neg1ne0 12382 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
129, 11, 6cxpne0d 26755 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
14 nnz 12634 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1514adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
168, 12, 13, 15expsubd 14197 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)) = (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
17 root1id 26797 . . . 4 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1817adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1918oveq1d 7446 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
208, 12, 13expclzd 14191 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ)
218, 12, 13expne0d 14192 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0)
22 recval 15361 . . . 4 ((((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ ∧ ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
2320, 21, 22syl2anc 584 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
24 absexpz 15344 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0 ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
258, 12, 13, 24syl3anc 1373 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
26 abscxp2 26735 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℝ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
271, 5, 26sylancr 587 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
28 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
2928absnegi 15439 . . . . . . . . . . . 12 (abs‘-1) = (abs‘1)
30 abs1 15336 . . . . . . . . . . . 12 (abs‘1) = 1
3129, 30eqtri 2765 . . . . . . . . . . 11 (abs‘-1) = 1
3231oveq1i 7441 . . . . . . . . . 10 ((abs‘-1)↑𝑐(2 / 𝑁)) = (1↑𝑐(2 / 𝑁))
3327, 32eqtrdi 2793 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = (1↑𝑐(2 / 𝑁)))
3461cxpd 26749 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝑐(2 / 𝑁)) = 1)
3533, 34eqtrd 2777 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = 1)
3635oveq1d 7446 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾) = (1↑𝐾))
37 1exp 14132 . . . . . . . 8 (𝐾 ∈ ℤ → (1↑𝐾) = 1)
3837adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝐾) = 1)
3925, 36, 383eqtrd 2781 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = 1)
4039oveq1d 7446 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = (1↑2))
41 sq1 14234 . . . . 5 (1↑2) = 1
4240, 41eqtrdi 2793 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = 1)
4342oveq2d 7447 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1))
4420cjcld 15235 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) ∈ ℂ)
4544div1d 12035 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4623, 43, 453eqtrd 2781 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4716, 19, 463eqtrrd 2782 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cexp 14102  ccj 15135  abscabs 15273  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  1cubrlem  26884
  Copyright terms: Public domain W3C validator