MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1cj Structured version   Visualization version   GIF version

Theorem root1cj 25336
Description: Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
root1cj ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))

Proof of Theorem root1cj
StepHypRef Expression
1 neg1cn 11750 . . . 4 -1 ∈ ℂ
2 2re 11710 . . . . . 6 2 ∈ ℝ
3 simpl 485 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
4 nndivre 11677 . . . . . 6 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
52, 3, 4sylancr 589 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
65recnd 10668 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
7 cxpcl 25256 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 589 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
10 neg1ne0 11752 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
129, 11, 6cxpne0d 25295 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 simpr 487 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
14 nnz 12003 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1514adantr 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
168, 12, 13, 15expsubd 13520 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)) = (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
17 root1id 25334 . . . 4 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1817adantr 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
1918oveq1d 7170 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)))
208, 12, 13expclzd 13514 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ)
218, 12, 13expne0d 13515 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0)
22 recval 14681 . . . 4 ((((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ ∧ ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
2320, 21, 22syl2anc 586 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)))
24 absexpz 14664 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0 ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
258, 12, 13, 24syl3anc 1367 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾))
26 abscxp2 25275 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℝ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
271, 5, 26sylancr 589 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁)))
28 ax-1cn 10594 . . . . . . . . . . . . 13 1 ∈ ℂ
2928absnegi 14759 . . . . . . . . . . . 12 (abs‘-1) = (abs‘1)
30 abs1 14656 . . . . . . . . . . . 12 (abs‘1) = 1
3129, 30eqtri 2844 . . . . . . . . . . 11 (abs‘-1) = 1
3231oveq1i 7165 . . . . . . . . . 10 ((abs‘-1)↑𝑐(2 / 𝑁)) = (1↑𝑐(2 / 𝑁))
3327, 32syl6eq 2872 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = (1↑𝑐(2 / 𝑁)))
3461cxpd 25289 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝑐(2 / 𝑁)) = 1)
3533, 34eqtrd 2856 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = 1)
3635oveq1d 7170 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾) = (1↑𝐾))
37 1exp 13457 . . . . . . . 8 (𝐾 ∈ ℤ → (1↑𝐾) = 1)
3837adantl 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝐾) = 1)
3925, 36, 383eqtrd 2860 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = 1)
4039oveq1d 7170 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = (1↑2))
41 sq1 13557 . . . . 5 (1↑2) = 1
4240, 41syl6eq 2872 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = 1)
4342oveq2d 7171 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1))
4420cjcld 14554 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) ∈ ℂ)
4544div1d 11407 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4623, 43, 453eqtrd 2860 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)))
4716, 19, 463eqtrrd 2861 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537  cmin 10869  -cneg 10870   / cdiv 11296  cn 11637  2c2 11691  cz 11980  cexp 13428  ccj 14454  abscabs 14592  𝑐ccxp 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-cxp 25140
This theorem is referenced by:  1cubrlem  25418
  Copyright terms: Public domain W3C validator