![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > root1cj | Structured version Visualization version GIF version |
Description: Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁 − 𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
root1cj | ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12322 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | 2re 12282 | . . . . . 6 ⊢ 2 ∈ ℝ | |
3 | simpl 483 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ) | |
4 | nndivre 12249 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ) | |
5 | 2, 3, 4 | sylancr 587 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ) |
6 | 5 | recnd 11238 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ) |
7 | cxpcl 26173 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ) | |
8 | 1, 6, 7 | sylancr 587 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ) |
9 | 1 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ) |
10 | neg1ne0 12324 | . . . . 5 ⊢ -1 ≠ 0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0) |
12 | 9, 11, 6 | cxpne0d 26212 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0) |
13 | simpr 485 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
14 | nnz 12575 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) |
16 | 8, 12, 13, 15 | expsubd 14118 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾)) = (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾))) |
17 | root1id 26251 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1) | |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1) |
19 | 18 | oveq1d 7420 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁) / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾))) |
20 | 8, 12, 13 | expclzd 14112 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ) |
21 | 8, 12, 13 | expne0d 14113 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) |
22 | recval 15265 | . . . 4 ⊢ ((((-1↑𝑐(2 / 𝑁))↑𝐾) ∈ ℂ ∧ ((-1↑𝑐(2 / 𝑁))↑𝐾) ≠ 0) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2))) | |
23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2))) |
24 | absexpz 15248 | . . . . . . . 8 ⊢ (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0 ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾)) | |
25 | 8, 12, 13, 24 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾)) |
26 | abscxp2 26192 | . . . . . . . . . . 11 ⊢ ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℝ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁))) | |
27 | 1, 5, 26 | sylancr 587 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = ((abs‘-1)↑𝑐(2 / 𝑁))) |
28 | ax-1cn 11164 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
29 | 28 | absnegi 15343 | . . . . . . . . . . . 12 ⊢ (abs‘-1) = (abs‘1) |
30 | abs1 15240 | . . . . . . . . . . . 12 ⊢ (abs‘1) = 1 | |
31 | 29, 30 | eqtri 2760 | . . . . . . . . . . 11 ⊢ (abs‘-1) = 1 |
32 | 31 | oveq1i 7415 | . . . . . . . . . 10 ⊢ ((abs‘-1)↑𝑐(2 / 𝑁)) = (1↑𝑐(2 / 𝑁)) |
33 | 27, 32 | eqtrdi 2788 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = (1↑𝑐(2 / 𝑁))) |
34 | 6 | 1cxpd 26206 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝑐(2 / 𝑁)) = 1) |
35 | 33, 34 | eqtrd 2772 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘(-1↑𝑐(2 / 𝑁))) = 1) |
36 | 35 | oveq1d 7420 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘(-1↑𝑐(2 / 𝑁)))↑𝐾) = (1↑𝐾)) |
37 | 1exp 14053 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (1↑𝐾) = 1) | |
38 | 37 | adantl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1↑𝐾) = 1) |
39 | 25, 36, 38 | 3eqtrd 2776 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (abs‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = 1) |
40 | 39 | oveq1d 7420 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = (1↑2)) |
41 | sq1 14155 | . . . . 5 ⊢ (1↑2) = 1 | |
42 | 40, 41 | eqtrdi 2788 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2) = 1) |
43 | 42 | oveq2d 7421 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / ((abs‘((-1↑𝑐(2 / 𝑁))↑𝐾))↑2)) = ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1)) |
44 | 20 | cjcld 15139 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) ∈ ℂ) |
45 | 44 | div1d 11978 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) / 1) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾))) |
46 | 23, 43, 45 | 3eqtrd 2776 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (1 / ((-1↑𝑐(2 / 𝑁))↑𝐾)) = (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾))) |
47 | 16, 19, 46 | 3eqtrrd 2777 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 − cmin 11440 -cneg 11441 / cdiv 11867 ℕcn 12208 2c2 12263 ℤcz 12554 ↑cexp 14023 ∗ccj 15039 abscabs 15177 ↑𝑐ccxp 26055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 df-log 26056 df-cxp 26057 |
This theorem is referenced by: 1cubrlem 26335 |
Copyright terms: Public domain | W3C validator |