![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmdivdiv | Structured version Visualization version GIF version |
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
prmdiv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
Ref | Expression |
---|---|
prmdivdiv | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssfz0 13581 | . . 3 ⊢ (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)) | |
2 | simpr 485 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (1...(𝑃 − 1))) | |
3 | 1, 2 | sselid 3977 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (0...(𝑃 − 1))) |
4 | simpl 483 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) | |
5 | elfznn 13514 | . . . . . . 7 ⊢ (𝐴 ∈ (1...(𝑃 − 1)) → 𝐴 ∈ ℕ) | |
6 | 5 | adantl 482 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℕ) |
7 | 6 | nnzd 12569 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℤ) |
8 | prmnn 16595 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | fzm1ndvds 16249 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) | |
10 | 8, 9 | sylan 580 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) |
11 | prmdiv.1 | . . . . . 6 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
12 | 11 | prmdiv 16702 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
13 | 4, 7, 10, 12 | syl3anc 1371 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
14 | 13 | simprd 496 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1)) |
15 | 6 | nncnd 12212 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℂ) |
16 | 13 | simpld 495 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ (1...(𝑃 − 1))) |
17 | elfznn 13514 | . . . . . . 7 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℕ) |
19 | 18 | nncnd 12212 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℂ) |
20 | 15, 19 | mulcomd 11219 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) = (𝑅 · 𝐴)) |
21 | 20 | oveq1d 7409 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 · 𝑅) − 1) = ((𝑅 · 𝐴) − 1)) |
22 | 14, 21 | breqtrd 5168 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝑅 · 𝐴) − 1)) |
23 | 16 | elfzelzd 13486 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℤ) |
24 | fzm1ndvds 16249 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) | |
25 | 8, 16, 24 | syl2an2r 683 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) |
26 | eqid 2732 | . . . 4 ⊢ ((𝑅↑(𝑃 − 2)) mod 𝑃) = ((𝑅↑(𝑃 − 2)) mod 𝑃) | |
27 | 26 | prmdiveq 16703 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
28 | 4, 23, 25, 27 | syl3anc 1371 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
29 | 3, 22, 28 | mpbi2and 710 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5142 (class class class)co 7394 0cc0 11094 1c1 11095 · cmul 11099 − cmin 11428 ℕcn 12196 2c2 12251 ℤcz 12542 ...cfz 13468 mod cmo 13818 ↑cexp 14011 ∥ cdvds 16181 ℙcprime 16592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-1st 7959 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-2o 8451 df-oadd 8454 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-sup 9421 df-inf 9422 df-dju 9880 df-card 9918 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-nn 12197 df-2 12259 df-3 12260 df-n0 12457 df-xnn0 12529 df-z 12543 df-uz 12807 df-rp 12959 df-fz 13469 df-fzo 13612 df-fl 13741 df-mod 13819 df-seq 13951 df-exp 14012 df-hash 14275 df-cj 15030 df-re 15031 df-im 15032 df-sqrt 15166 df-abs 15167 df-dvds 16182 df-gcd 16420 df-prm 16593 df-phi 16683 |
This theorem is referenced by: wilthlem2 26502 |
Copyright terms: Public domain | W3C validator |