![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsext | Structured version Visualization version GIF version |
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsext | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4965 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) | |
2 | 1 | ralrimivw 3150 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) |
3 | simpll 763 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∈ ℕ0) | |
4 | simplr 765 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∈ ℕ0) | |
5 | nn0z 11854 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
6 | iddvds 15456 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∥ 𝐵) |
8 | 7 | ad2antlr 723 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐵) |
9 | breq2 4966 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐵)) | |
10 | breq2 4966 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐵)) | |
11 | 9, 10 | bibi12d 347 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵))) |
12 | 11 | rspcva 3557 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
13 | 12 | adantll 710 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
14 | 8, 13 | mpbird 258 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐵) |
15 | nn0z 11854 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
16 | iddvds 15456 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∥ 𝐴) |
18 | 17 | ad2antrr 722 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐴) |
19 | breq2 4966 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐴)) | |
20 | breq2 4966 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐴)) | |
21 | 19, 20 | bibi12d 347 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴))) |
22 | 21 | rspcva 3557 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
23 | 22 | adantlr 711 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
24 | 18, 23 | mpbid 233 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐴) |
25 | dvdseq 15497 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴)) → 𝐴 = 𝐵) | |
26 | 3, 4, 14, 24, 25 | syl22anc 835 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 = 𝐵) |
27 | 26 | ex 413 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) → 𝐴 = 𝐵)) |
28 | 2, 27 | impbid2 227 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 class class class wbr 4962 ℕ0cn0 11745 ℤcz 11829 ∥ cdvds 15440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-sup 8752 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-dvds 15441 |
This theorem is referenced by: odmulg 18413 znchr 20391 |
Copyright terms: Public domain | W3C validator |