MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsext Structured version   Visualization version   GIF version

Theorem dvdsext 15504
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsext ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dvdsext
StepHypRef Expression
1 breq1 4965 . . 3 (𝐴 = 𝐵 → (𝐴𝑥𝐵𝑥))
21ralrimivw 3150 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥))
3 simpll 763 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 ∈ ℕ0)
4 simplr 765 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵 ∈ ℕ0)
5 nn0z 11854 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
6 iddvds 15456 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵𝐵)
75, 6syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵𝐵)
87ad2antlr 723 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐵)
9 breq2 4966 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
10 breq2 4966 . . . . . . . 8 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
119, 10bibi12d 347 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1211rspcva 3557 . . . . . 6 ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
1312adantll 710 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
148, 13mpbird 258 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐵)
15 nn0z 11854 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
16 iddvds 15456 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴𝐴)
1715, 16syl 17 . . . . . 6 (𝐴 ∈ ℕ0𝐴𝐴)
1817ad2antrr 722 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐴)
19 breq2 4966 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
20 breq2 4966 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
2119, 20bibi12d 347 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2221rspcva 3557 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2322adantlr 711 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2418, 23mpbid 233 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐴)
25 dvdseq 15497 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
263, 4, 14, 24, 25syl22anc 835 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 = 𝐵)
2726ex 413 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
282, 27impbid2 227 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105   class class class wbr 4962  0cn0 11745  cz 11829  cdvds 15440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-dvds 15441
This theorem is referenced by:  odmulg  18413  znchr  20391
  Copyright terms: Public domain W3C validator