MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsext Structured version   Visualization version   GIF version

Theorem dvdsext 16269
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsext ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dvdsext
StepHypRef Expression
1 breq1 5105 . . 3 (𝐴 = 𝐵 → (𝐴𝑥𝐵𝑥))
21ralrimivw 3129 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥))
3 simpll 766 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 ∈ ℕ0)
4 simplr 768 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵 ∈ ℕ0)
5 nn0z 12533 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
6 iddvds 16217 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵𝐵)
75, 6syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵𝐵)
87ad2antlr 727 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐵)
9 breq2 5106 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
10 breq2 5106 . . . . . . . 8 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
119, 10bibi12d 345 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1211rspcva 3583 . . . . . 6 ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
1312adantll 714 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
148, 13mpbird 257 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐵)
15 nn0z 12533 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
16 iddvds 16217 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴𝐴)
1715, 16syl 17 . . . . . 6 (𝐴 ∈ ℕ0𝐴𝐴)
1817ad2antrr 726 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐴)
19 breq2 5106 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
20 breq2 5106 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
2119, 20bibi12d 345 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2221rspcva 3583 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2322adantlr 715 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2418, 23mpbid 232 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐴)
25 dvdseq 16262 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
263, 4, 14, 24, 25syl22anc 838 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 = 𝐵)
2726ex 412 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
282, 27impbid2 226 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  0cn0 12421  cz 12508  cdvds 16200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-sup 9370  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-z 12509  df-uz 12773  df-rp 12931  df-seq 13946  df-exp 14006  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16201
This theorem is referenced by:  odmulg  19472  znchr  21506
  Copyright terms: Public domain W3C validator