![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsext | Structured version Visualization version GIF version |
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsext | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) | |
2 | 1 | ralrimivw 3150 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) |
3 | simpll 765 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∈ ℕ0) | |
4 | simplr 767 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∈ ℕ0) | |
5 | nn0z 12587 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
6 | iddvds 16217 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∥ 𝐵) |
8 | 7 | ad2antlr 725 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐵) |
9 | breq2 5152 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐵)) | |
10 | breq2 5152 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐵)) | |
11 | 9, 10 | bibi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵))) |
12 | 11 | rspcva 3610 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
13 | 12 | adantll 712 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) |
14 | 8, 13 | mpbird 256 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐵) |
15 | nn0z 12587 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
16 | iddvds 16217 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∥ 𝐴) |
18 | 17 | ad2antrr 724 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 ∥ 𝐴) |
19 | breq2 5152 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐴)) | |
20 | breq2 5152 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐴)) | |
21 | 19, 20 | bibi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) ↔ (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴))) |
22 | 21 | rspcva 3610 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
23 | 22 | adantlr 713 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → (𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴)) |
24 | 18, 23 | mpbid 231 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐵 ∥ 𝐴) |
25 | dvdseq 16261 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴)) → 𝐴 = 𝐵) | |
26 | 3, 4, 14, 24, 25 | syl22anc 837 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥)) → 𝐴 = 𝐵) |
27 | 26 | ex 413 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥) → 𝐴 = 𝐵)) |
28 | 2, 27 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5148 ℕ0cn0 12476 ℤcz 12562 ∥ cdvds 16201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16202 |
This theorem is referenced by: odmulg 19465 znchr 21337 |
Copyright terms: Public domain | W3C validator |