MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsext Structured version   Visualization version   GIF version

Theorem dvdsext 16137
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsext ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dvdsext
StepHypRef Expression
1 breq1 5106 . . 3 (𝐴 = 𝐵 → (𝐴𝑥𝐵𝑥))
21ralrimivw 3145 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥))
3 simpll 765 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 ∈ ℕ0)
4 simplr 767 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵 ∈ ℕ0)
5 nn0z 12456 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
6 iddvds 16086 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵𝐵)
75, 6syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵𝐵)
87ad2antlr 725 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐵)
9 breq2 5107 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
10 breq2 5107 . . . . . . . 8 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
119, 10bibi12d 345 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1211rspcva 3577 . . . . . 6 ((𝐵 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
1312adantll 712 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐵𝐵𝐵))
148, 13mpbird 256 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐵)
15 nn0z 12456 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
16 iddvds 16086 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴𝐴)
1715, 16syl 17 . . . . . 6 (𝐴 ∈ ℕ0𝐴𝐴)
1817ad2antrr 724 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴𝐴)
19 breq2 5107 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
20 breq2 5107 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
2119, 20bibi12d 345 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2221rspcva 3577 . . . . . 6 ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2322adantlr 713 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → (𝐴𝐴𝐵𝐴))
2418, 23mpbid 231 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐵𝐴)
25 dvdseq 16130 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
263, 4, 14, 24, 25syl22anc 837 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)) → 𝐴 = 𝐵)
2726ex 413 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥) → 𝐴 = 𝐵))
282, 27impbid2 225 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3062   class class class wbr 5103  0cn0 12346  cz 12432  cdvds 16070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-sup 9311  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-n0 12347  df-z 12433  df-uz 12696  df-rp 12844  df-seq 13835  df-exp 13896  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-dvds 16071
This theorem is referenced by:  odmulg  19269  znchr  20892
  Copyright terms: Public domain W3C validator