MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdabs Structured version   Visualization version   GIF version

Theorem gcdabs 15867
Description: The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdabs ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))

Proof of Theorem gcdabs
StepHypRef Expression
1 zre 11973 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11973 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 absor 14652 . . . 4 (𝑀 ∈ ℝ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀))
4 absor 14652 . . . 4 (𝑁 ∈ ℝ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
53, 4anim12i 615 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
61, 2, 5syl2an 598 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
7 oveq12 7144 . . . 4 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
87a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
9 oveq12 7144 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd 𝑁))
10 neggcd 15861 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁))
119, 10sylan9eqr 2855 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1211ex 416 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
13 oveq12 7144 . . . . 5 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd -𝑁))
14 gcdneg 15860 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
1513, 14sylan9eqr 2855 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1615ex 416 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
17 oveq12 7144 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd -𝑁))
18 znegcl 12005 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
19 gcdneg 15860 . . . . . . 7 ((-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2018, 19sylan 583 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2120, 10eqtrd 2833 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
2217, 21sylan9eqr 2855 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
2322ex 416 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
248, 12, 16, 23ccased 1034 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
256, 24mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cr 10525  -cneg 10860  cz 11969  abscabs 14585   gcd cgcd 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834
This theorem is referenced by:  absmulgcd  15887  lcmgcd  15941  lcmgcdeq  15946  zgcdsq  16083  lgsne0  25919  zexpgcd  39491
  Copyright terms: Public domain W3C validator